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Abstract 

The cellular responses to stress are a complex phenomenon. These have faced varied impacts of the advancements in 

biomolecular, cellular and biomedical fields that have taken place from time to time. Nanotechnology and nanomaterials 

have played their major roles in these advanced achievements. The interactions between cells and the various 

nanomaterials are obvious due to fabricated and/or engineered nanomaterials that are designed with special features to 

attain specific set targets. These nanomaterials are utilized in varied modes such as drug carriers, remedial agents of 

environmental aspects, biotechnological and biomedical processes, implants, biosensors etc. The implications of these 

wonder materials in any biosystems, industrial processes and products etc ensure their interactions with cells. 

Nanomaterials are also capable to induce cellular stress in biosystem as they are the components of the products used in 

daily life. There are numerous biomolecules and the cellular processes that are involved in intra and intercellular 

communications. The cellular communication is the prime functional aspect for cell survival. The interaction between the 

cells and the nanomaterials are likely to influence this cellular communications and other cellular processes. These 

features in all probabilities affect cellular responses. Cellular responses are protective and/ or rendering the affected cells 

prone to necrosis or cellular death. Various nanomaterials with different reactive affinities are bound to influence the 

cellular responses with respect to the stress. This reflects on the needs to evaluate and understand the mechanism 

involved during the process of cellular stress and the related behavior.  
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Introduction 

Overview of Cellular Stress and Cellular 
Response 

Stress is the resultant impact of specific factors like 
molecular flux, induced mechanical forces due to the flow 

of body fluids, intrinsic and extrinsic biomolecular and 
cellular movements, change in the density of body fluids, 
flux of toxins or any xenobiotics which affect minor to 
major changes in the ambient cellular environment. The 
state of stress may be expressed as a change in size and 
shape of cell, molecular fluctuations, intra and extra 
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cellular hydrostatic pressure, change in the cell 
organelles, deficient recourses, infection, etc. Under 
normal range of varied stress caused by sub acute 
exposure to stress (physical, biochemical etc, there are no 
drastic changes in the structural, functional cellular 
integrity but extreme conditions of stress resulted by sub 
chronic or chronic exposure lead to cellular 
disorganization in their structural and functional 
integrities. The degree of disorganization is proportional 
to the degree of stress. The stress can be either acute or 
chronic in nature. Cell under stress exhibits changes in 
molecular, biochemical, conformational and functional 
adaptations or adjustments to retain the specific cellular 
homeostatic state. The degree and the duration of stress 
are the deciding parameters of the varied cellular 
fluctuations and/or adaptabilities.  

 
A basic functional principle is that when ever work is 

done energy is used resulting in some change/s or 
fluctuations and these are exhibited in the body. 
Sometimes these changes are very finite and can be 
recorded. These changes are in accordance with rate, 
intensity and efficacy of the stimuli. It may be envisaged 
that all responses are dependent on the time and length 
scale concept [1]. Atoms combine and form complex 
molecules that in turn form structural and functional 
domain of megamolecules or basic structural aspects of 
cell organelle and so on. When micro, macro and mega 
molecules of typical size and form move across the 
biological barrier i.e. cell membrane and associated 
structures, during translocation, transportation there is a 
physical and chemical impact on the barrier because 
these molecules exert physical stress on its finite 
constitutional component [2]. Thus a biological entity 
experiences osmotic pressure, turgor pressure, tonicity 
(osmotic pressure gradient), forces due to osmosis, 
viscosity of body fluids, and concentration gradient across 
the membrane under consideration and so on. The 
physical forces caused due to these conditions impact the 
biological barrier. Further, such zones of the cell 
membranes undergo physical stress along with their 
constitutional components [3]. Cell membrane whether 
prokaryotic or eukaryotic, either solitary or in groups, 
possess some of the physical properties such as elasticity, 
permeability, electrical potential with reference to 
charged molecules of the cell membrane or those moving 
across it.  

 
Although cell is a structural and functional unit of a 

biosystem, it is influenced by the biophysical aspects. In 
biophysical terms it does work at the cost of some energy. 
Thus in addition to biochemical influence there are 
biophysical influences affecting the functional and 

regulatory aspects of cell depending on the degree of 
impact and type of the cell.  

 
The regulatory role of cell includes (i) variety, nature 

and number of membranes, (ii) nature of lipid 
components associated with membrane, (iii) causing 
appropriate fluctuations in the components of glycocalyx 
such as glycocalyx protein and lipid associated 
carbohydrate molecules, (iv) regulatory aspects related to 
the selectivity of the integrated membrane proteins in 
order to permit these proteins to get transferred to the 
respective molecules bound along with them, (v) 
monitoring the single integral membrane protein and/or 
closely related or associated components to facilitate the 
movements to and fro across the membrane depending 
on the nature of the ions and other molecules, (vi) 
providing appropriate functional area for inter actions 
that involve folding, indenting, averting, getting pinched 
off etc, (vii) permitting the movements of molecules 
either embedded in membrane or present either on the 
inner or outer surfaces of the membrane [4]. A cell under 
stress responds to any reaction that causes distortion or 
damage to macromolecules beyond its threshold limits. 
The cellular response is focused temporarily to enhance 
the limits of tolerance towards the distortion of 
macromolecules. This is accomplished by utilizing the 
‘preserved phylogenetic set of gene’ and the pathways 
involving stabilization of the macromolecule. The repair 
of damaged macromolecule is directed to the promotion 
of cellular and organismal integrity under non-optimal 
cellular state. The overall related mechanism needs 
specific time limit to sort out special stressor-specific 
adaptation that is designed to reestablish homeostatic 
conditions of the cell under stress [5]. Kultz tried to 
summarize cellular response to stress as (i) cellular 
response is related to changes caused in extra cellular 
factors that have damaged the structural and functional 
integrity of macromolecule/s, (ii) there is a specific set of 
homologous proteins that participate during cellular 
response in most of the biosystem, (iii) when cell is 
subjected to multiple stresses its response becomes 
synergistic in nature. When a cell is pre-exposed to one 
type of stress this stress in turn induces ‘transient stress-
hardening’. This cell may be induced to develop ‘cross 
tolerance’ to other forms of stresses [5]. 

 
In general there are four major modes of cellular 

responses during adverse, abnormal and clinical or 
pathophysiological conditions. These modes functionally 
converge towards the stabilizing structural and functional 
integrity of macromolecules. These four modes also try to 
conserve metabolic energy to reestablish cellular 
homeostasis [5].  
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1. The check points of cell cycle regulate the growth. This 
cell cycle check point involves G1/S check point (Bartek 
and Inkas, 2001), G2/M check point and translational 
control mechanism [6]. 

2. Molecular chaperons (HSPs) and protein stabilizers get 
activated involving phosphorylation of chaperon (HSP-
28) through p38 MAP kinase signaling path ways [7]. 

3. Mechansim of stabilization, repair of nucleic acids and 
chromatin gets activated involving p53 pathway, and 
NFkβ path way [8]. 

4. The molecular debris formed during the stress period 
is cleared involving ‘Ubiquitin-proteasome pathway’.  

 
The processes like ‘quality control of newly 

synthesized proteins’, regulation of transcriptional 
factors, expression of genes, differentiation of cells, 
responses related to immune stimuli, pathogenic 
conditions like cancer, neurodegenerative defect and 
diseases, atherosclerosis, inflammatory process, 
formation of cataract, senescence, cell cycle, etc come 
under ‘Cellular degradation system [9]. The efficacy of the 
biosystem is broadly related to its capability to cope with 
intrinsic and extrinsic stress. Genetic and extrinsic factors 
do have their roles in stress response mechanism. 
‘Ubiquitin-proteasome system’ is the primary proteolytic 
mechanism that regulates the degradation of damaged 
proteins. It also controls the turn-over of the proteins of 
cytosol and nucleus. Basically two steps are involved 
during the degradation of proteins under ubiquitin-
proteasome system: in first step the protein to be 
degraded is tagged with polyubiquitin chain and during 
second step the tagged protein is degraded using 
proteasome. Ubiquitin is a conserved protein and has 76 
amino acids. The tagging involves polyubiquitination; this 
process is complex and involves ubiquitin protein and 
three different enzymes [10]. The proteins to be degraded 
undergo a complex process called ubiquitination. 
Leestemaker and Ovaa mentioned that ubiquitination is 
accomplished in three steps. In first step ubiquitin gets 
activated involving enzyme E1 and ATP, in second step 
the activated ubiquitin is transferred to enzyme E2 and 
during third step the complex of ubiquitin and E2 is 
shifted to the lysine residue of the target protein. This 
shifting is dependent on the enzyme E3. The ubiquitin-
proteasome system plays a central role during 
establishing cellular homeostasis. The process of 
ubiquitination can be reversed when ‘deubiquitination 
enzymes’ are employed. During this process ubiquitin 
moiety is separated from the target protein. These 
deubiquitination enzymes are also able to trim the 
ubiquitin chain [11].  

 

Two major parameters like degree of severity and the 
duration of the stress play deciding role during the 
stressed cellular behavior. During such conditions the cell 
either tries to retain its normal cellular homeostasis or 
tries to adapt to the conditions set by the stress on the 
cell. The cellular response may include (i) initiation of the 
repair mechanism using available resources, (ii) induction 
of temporary adaptive efforts with respect to the stressful 
conditions, (iii) may induce autophagy or (iv) initiation of 
process of cellular death [12]. Cellular repair mechanism 
involves change in gene expression, modulate the 
transcription under stressed conditions, controlled repair 
of quality protein, repair the damage caused by the stress 
or modify the response accordingly [12].  

 
Intercellular communication is related to the nature of 

the respective signal i.e. contact mediated diffusible 
ligand; spatial distribution of signal and cell/cells; mode 
of reception of the signal. There is every chance that a 
signal may change with the change in the micro and/or 
ambient environment [13]. During the developmental 
phase the concerned mother cells show external ligand 
and the behavior is gradient based. This aspect 
establishes spatial pattern in the tissue and is 
accomplished either differentiating phenotype cells in 
graded manner or inducing the cellular movements 
towards the specific location. Such cellular behavioral 
movements are often observed among metastatic cells 
[14,15]. Cells exhibit response to chemicals that induce or 
act as stimuli or cues given by the extracellular matrix. 
These are responsible for chemo-toxicity. It is also 
dependent on the gradient cues or chemical gradient 
indication based on the specific substrata [16]. Individual 
cells give response with respect to external directed cues. 
These cues are spread spatially in the heterogeneously 
pattern. It may respond to the location of the cell. In case 
of immune response of cell i.e. leukocyte and 
macrophages, is also related to the graded cytokines 
released by the cell like endothelial cell. This enables the 
lymphocytes to reach the injured cell [17].  

 
Cell under stress may modulate the signaling 

pathways like mammalian target of rapamycin, 
transformation of related protein-53, Necrotic factor 
kappa β, or may exhibit adaptive behavior with respect to 
the stress [18-22]. The stress can induce genomic 
instability or production of those proteins that are 
responsible for the protection of the cell or the 
disintegration of existing proteins and/or hinder their 
functions. The process of production of protective 
proteins is very complex in nature. The protective 
proteins (also called chaperons) have multiple 
functionalities. Their mode of function involves formation 
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of sticky, carbon rich region of unfolded proteins referred 
as ‘small pockets’. These also form a ‘protective-arm’ 
around the neighboring unfolded proteins and form a 
barrel shaped structure that protect, sequester non-
disintegrated zone from the potential disoriented or 
tangled zone of proteins.  

 
Cellular adaptive behavior with respect to stress may 

include retention of genetic stability or may relax the 
respective control pathways. These adaptive responses 
constitute intrinsic adaptive mechanism. During the initial 
stages the stressed cell tries to with stand the stressful 
conditions exhibiting short time adaptation. Functional 
aspects of a cell include cell adhesion, cellular spreading, 
cell division and inter and intra cellular communications. 
Further, in eukaryotes cellular arrangement, the tissues 
are designed in 3D geometries. Various functions of 
tissues and organs are facilitated due to homeotypic and 
heterotypic cellular interactions between parenchymal 
and non-parenchymal cells in tissues. During embryonic 
formative movements and development spatial and 
geometrical distribution of various cells, germinal layers, 
cell adhesion, cellular spreading follow the specific 3 D 
design that is predetermined. The aggregate of one type of 
cells can be detached by fine agitation for short periods 
and improper washing while different types of cells can 
be set in to a specific 3D shape in a controlled manner. 
This aspect is very much employed during morphogenesis 
of embryos. The investigation on 3D spatial cellular 
organization is very helpful in understanding the 
dynamics of cancerous tissue, angiogenesis, tissue 
engineering or fabricating micro-tissues, regenerative 
medicine and drug designing [23]. 
 

Significance 

Cells may be subjected to persistent stress because of 
the lifestyle, environmental conditions, use of therapeutic 
drugs, xenobiotics, age related problems and clinical 
applications like tissue transplantation, administration of 
biomedical devices etc. In the recent times most of these 
practices involve either directly or indirectly 
nanomaterials. During these practices quality and cellular 
well being are of paramount significance for the amicable 
successful treatment. Therefore it becomes obvious that 
understanding the mechanism involved during cellular 
stress and cellular response will enable to detect the 
derogative impacts and make an effort to reduce the 
intensity and frequency of developmental disorders due 
these conditions. It is essential to study the successful 
adaptation to stress to envisage the remedial aspects and 
development of relevant therapeutics, biomedical, 
biomolecular and clinical practices. This may further 

contribute to design the experimental model in fields like 
pharmacology, nanotheranostics and other related 
aspects to find the suitable and effective remedies. These 
may assist in fabrication and formulation of nanobased 
drug carriers, biomedical and nanobiomedical devices etc. 
Even environmental, exposure to consumer products 
resulting in risks or damages can be visualized and 
effective adaptive steps can be envisaged.  
 

Nanomaterials in the Service of Biological 
and Biomedical Fields 

Good number of nanomaterials like metallic, organic 
and inorganic nanoparticles, liposomes, polyplexes, 
quantum dots, carbon nanomaterials like carbon 
nanotubes, fullerene, graphene, etc, have been considered 
in the investigation related to biological, biomedical fields 
specifically also in the field of stem cell research [3,24-38] 
Synthetic materials like polylactides-co-glycolide (PGLA), 
polycaprolactone and naturally occurring materials like 
collagen, chitosan etc, have been involved in biological 
and biomedical research [23]. Some of the most common 
aspects that have been considered under stem cell 
research include non-evasive tracing of stem cells, 
transplanted progenitor cells, intracellular delivery of 
DNA, RNA interference molecules like proteins, peptides, 
genes, and small drugs either during stem cells 
differentiation or to investigate cellular biochemical 
processes [39]. These molecules are also utilized during 
the investigations related to the survival of the stem cells 
and biosensing of the physiological state of the stem cells 
[39]. When nanomaterials come in contact with a cell, cell 
organelles and biomolecules like proteins, nucleic acids or 
endoplasmic reticulum, mitochondria etc, a 
‘bionanointerface/nanobiointerface’ is established at the 
site of contact between the two. The nature of 
bionanointerface depends on the colloidal forces, dynamic 
biophysicochemical forces and interactions involved. 
These forces result in various interactions that lead to the 
formation of protein corona, particle wrapping, inter and 
intracellular up-take, biocatalytic processes etc, 
depending and resulting in their biocompatibility, 
biodistribution and/or biodiversity. Further 
nanomaterials may undergo phase transformation, 
release of free energy, restructuring, dissolution etc at the 
interface [40]. The studies related to the interface formed 
provide useful information regarding the predictive 
designing of the structure and activity of nanomaterials 
[40]. Lancu, et al. are of the opinion that because of the 
unique features of the nanomaterials they behave like 
bioactive molecules. The potentials of nanomaterials and 
the totipotency/pluripotancy of stem cells in combination 
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play a vital role in curing some of the incurable diseases 
like cancer, cirrhosis, injury to spinal cord, and 
neurodegenerative diseases etc [41].  

 
Stem cells have a natural feature to get differentiated 

in to a special type of cells after genetic manipulation. 
Because of this feature the stem cells are considered as 
suitable tools for replacing cells in the field of 
regenerative medicine. The conventional modes to 
transfer gene to the progenitor cells are unsafe and 
exhibit lower degree of efficacy. Nanomaterials are a 
better option in this regard. Carbonate apatite with 
embedded fibronectin and E-cadherin chimera can 
conveniently acts as a carrier for functionalized DNA to 
the stem cells considered from the embryonic stage [42]. 
The transgenic delivery and expression are very distinct. 
Thus using functionalized nano-composites with DNA 
adhesive proteins can be a better option as a transfection 
system [42].  

  
Nanomaterials such as peptides amphiphils, self-

assembling peptides, nanotubes, layer-by-layer 
complexes, electron spun scaffolds, nanocomposites etc, 
have been very helpful and associated with the applied 
aspects of cell culture, encapsulation and as drug delivery 
agents. Nanomaterials are the preferred option because of 
their ability to get suitably modified or regulated even 
when within intracellular and extracellar environment. 
Further nanomaterials like DNA polyplexes and carbon 
nanomaterials etc act as good vehicles for cell delivery 
and also facilitate regenerative capacity. Such 
nanomaterials can be conveniently characterized as per 
the clinical safety and therapeutic applications [43]. 
Chemically fabricated gold coated collagen nanofibers are 
biocompatible and have the ability to elevate the degree 
of cellular differentiation of mesenchymal stem cells in to 
myocardial and neuronal cells. This process of 
differentiation is associated with the expression of 
markers related to atrium, natriuratic peptide, actin-F, 
actin monomer, glial acidic protein and neurofilaments 
[44].  

 
In recent times, different nanomaterials have been 

experimented on in the fields of biological, biomedical and 
pharmacological/pharmaceutical area etc. A condition in 
which α-galactosidase activity is absent results in the 
accumulation of glycosphingolipids in vasculature [45]. 
This condition in turn can cause multiple organ pathology. 
Such pathological conditions may be rectified by the 
enzyme replacement therapy. This therapy has many 
deficiencies and a lower degree of efficacy. Such 
conditions are corrected and correlated by intracellular 
penetration of human recombinant α-galactosidase-A 

enzyme loaded within nanoliposomes that are 
functionalized with arginine-glycine-aspartate peptide. 
Such protein-nanoliposomes conjugates act as bioactive 
nanomaterial and have therapeutic benefits [45]. 

 
Fabricated graphene quantum dots are pH sensitive 

carriers for chemotherapeutic drugs. The drug is released 
as a result of acidification of vesicle in cells. Cancer cells 
uptake these carriers conveniently when functionalized 
with RGD (arginine-glycine-aspartate peptide). The 
graphene quantum dots are better options as they reach 
cancer cells readily [46].  

 
Single walled carbon nanotubes (SWCNT) covalently 

bonded with radio metal ion chelates (DOTA) and 
desferrioxamine (DFO) were used in the study with 
reference to the activity and clearance from blood [47]. It 
was seen that pharmacokinetics related to these 
fabricated SWCNT could influence the blood clearance 
and facilitated distinct imaging. The tomography of the 
tumor was imaged using ‘Near infrared’ 3D fluorescence 
technique. During this study it was seen that SWCNT 
construct was safe and murine cells model could tolerate 
it comfortably. This indicates that the SWCNT based 
nanomaterials are a favorable option to be implicated in 
tumor vascular tissues studies [47]. Multiwalled carbon 
nanotubes (300 and 700 nm in length) were 
functionalized with Poly (4-polyvinvylpyridine). Their 
uptake and translocation was observed in case of 
pulmonary respiratory epithelial barrier. The 
monoculture of immortalized human alveolar epithelial 
type cell and primary human alveolar epithelial type cell 
were used as test models. The rate of uptake and 
translocation of these functionalized multiwalled carbon 
nanotubes was different in these test cells and was 
dependent on the physicochemical properties of 
nanoparticles and the nature of cell. The degree of 
multiwalled carbon nanotubes uptake with smaller length 
(300 nm) was higher than that of multiwalled carbon 
nanotubes with larger length (700nm). Even the 
translocation rates were different in the cell-type studied 
[48].  

 
Fullerene C60 along with its water soluble forms have 

the potential to protect against damage either 
biochemical or specifically oxidative stress [33]. Graphene 
sheets are modified in to nana-porous silica coated 
material and specific target peptides can be conjugated. 
The resultant product is suitable for carrying cancer 
treating drugs and its regulated release. The release of 
loaded chemicals is based on the factors like heat and pH 
[2]. DNA nanomaterial has become very handy because 
DNA molecule has the precise structure, very high degree 
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of biocompatibility, varied functionality and ability to 
undergo self assembly. These features of DNA make it one 
of the most suitable tools as a carrier and applications in 
biological, biomedical and therapeutic applications [49]. 
DNA as nanomaterials exhibits very high degree of 
biocompatibility and cellular up take. It can be modified in 
to DNA nanotubes, DNA tetrahedral and origami 
nanorobots; these forms are very useful in the field of 
drugs, therapeutics and siRNA based gene silencing 
techniques [50]. Nanoparticles such as silica, gold, 
titanium dioxide, silver and iron oxide also play 
significant roles in modulating stem cell differentiation 
[51].  
  

Nanobio-Interface and its Role in Cellular 
Behavior 

Nanomaterials are considered to be similar to 
endogenous biomolecules because of their ability to move 
across most of the biological barriers, and to react with 
bio-molecules [2]. As mentioned above ‘nanobiointerface’ 
is established between nanomaterials and biomolecules 
within bioenvironment. This interface represents how the 
biomolecules react or ‘see’ the nanomaterial and vice 
versa. The result of this interaction reflects on the 
attachment/binding of biomolecule on the surface of 
nanomaterial as if the biomolecules are attached to the 
scaffolds made of nanomaterials. If this nanobiointerface 
is suitably and intelligently designed it can help to 
understand the functionality of the nanoscaled system in 
biological environment. Further, the mechanism involved 
at nanobiointerface formed between nanomaterials like 
nucleic acids, polymers, peptides, proteins, antibodies etc, 
can be elaborated. Therefore the application of 
nanobiointerface formation may be utilized in probing 
varied biological processes [52]. Cellular adhesion is 
another aspect of cellular behavior. This aspect is 
dependent on the features of the substrate like chemistry, 
topography, hydrophobicity and surface energy etc, 
exhibited by the interacting extracellular matrix or cells. 
To ensure a specific set target the substrate can be 
designed with reference to the regenerative medicine and 
tissue engineering applications [53]. Nanobiointerface 
exhibits some of the controllable topographic features like 
nanoparticle interface, nano- pattern, combined nano and 
microtopography, nano structures as natural and 
polymeric complex mixed composites etc [54]. 

 
Topographic aspect of nanomaterials and the 

interacting cells is a very important aspect in the fields of 
applied nanotechnology and biomedical investigations. 
The topographical characters have substantial impacts on 

the cellular behavior with respect to the interface and 
surface interactions resulting in some of the independent 
biochemical indications [54]. Cellular functions and 
behavior like cellular adhesion, inter and intracellular 
communication, cellular differentiation etc, are dependent 
on the cellular and extracellular matrix and their 
topographic nature. Nanoscaled engineered materials can 
be fabricated in to an artificial extracellular matrix that 
provides a combined impact of physical, chemical, 
mechanical and biological features. Over all resultant 
impact of these nanoscaled materials facilitates the 
cellular functionality specifically for inter and intra 
cellular communication [54]. There exist nanoscaled 
spaces between extracellular matrix and cell ligands, 
integrin distribution, and signal transduction components 
of the cell. When nanomaterials having specific 
geometrically defined and biofunctionalized surface are 
brought in contact with the stem cells these get 
influenced. Thus this improvised extracellular matrix is 
able to induce stem cells to carry out their natural 
behavior [55]. Stem cells exhibit multipotency when 
present in their respective natural ‘biological niche’ but 
lose this behavioral ability when the stem cells are 
subjected to culture medium. With this their lost 
behavioral ability, their clinical and biomedical 
applications also become debatable. If engineered 
artificial analog to their respective ‘biological natural 
niche’ are employed in cell cultural experiments then the 
biofunctionality can be restored. A macroporous hydrogel 
scaffold fabricated resembling sponge architectural 
trabacular bone can effectively retain the respective 
biofunctionality of hematopoietic stem cells. Even 
mesenchymal and non-mesenchymal cells from umbilical 
cord, bone marrow and osteoblasts have shown 
biofunctional behavior when co-cultured in pores of 
hydrogel scaffold. Thus this nanofabrication can be a good 
biomimatic medium to investigate the new clinical and 
biomedical applications of the nanomaterials [56].  

 
The properties of surface of nanoscale materials affect 

varied molecular and biological processes at the site of 
bionanointerface harnessing recent modes of designing 
materials to be used in the field of biomedical devises. 
Nanotechnology, materials engineering, nanoengineering 
are being used as tools in predicting, diagnosing means in 
biomedical field [57]. Cell adhesion with the extracellular 
matrix is influenced by the specific class of integrin 
transmembrane receptors. A peptide sequence that is 
made of three amino acids namely arginine, glycine and 
aspartic acid plays a significant role in identifying the 
related integrin to ensure cell adhesion. Even the density 
and lateral distribution of ligand associated with cell 
adhesion is one of the parameters that affect this process. 
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Conditions like reduced number of adhering cells, 
declined or restricted area of cells to spread (upper limit 
of space is below 58 nm) and restricted forces for 
adhesion are responsible for the need of cluster of αv β3 

integrin to obtain appropriate formation of the contact. 
Nanopatterned interface can be utilized to investigate and 
mimicking the cell to cell contact [58].  

 
The study related to cell adhesion, differentiation and 

proliferation gets influenced by the interactions between 
fabricated materials/and nanomaterials and cells/tissues 
[58]. The parameters involved in these interactions may 
be used as a guide to design suitable options depending 
on the physicochemical features of the material involved. 
Some the parameters include hydrophobicity and the 
charge on the materials. If the material used is moderately 
hydrophilic and positive charged the cells exhibit 
moderate adhesion [59]. The cell adherent molecules such 
as vitronectin and fibronectin get adsorbed on such 
substrate. This cell adhesion takes place in a specific 
geometric formation [60]. This geometrical formation is 
dependent on the adhering associated molecules as these 
can be available to cell adhesion receptors i.e. integrins. 
The degree of hydrophilicity is an important parameter 
because higher degree of hydrophilicity restricts adhesion 
of these proteins because possibly these are bound with 
weak bonds. Surface with higher degree of 
hydrophobicity is also not favorable for cell adhesion. 
This process is hampered if the proteins are adsorbed 
rigidly and/or are in denatured form. Other parameters 
like wettability, physical treatment by irradiation with 
ions, plasma or UV radiation influence cell adhesion 
specifically if synthetic polymers are used as substrate. 
The synthetic polymerized substrate when activated by 
irradiation and functionalized using varied biomolecules 
specific nanomaterials can enhance the cell 
functional/behavioral efficacy. Roughness and surface 
topography also affect the cell adhesion. Nanostructures 
having irregularities (dimensions 100 nm) as substrate 
are most suitable for cell adhesion and growth but similar 
material with micro sized irregularities are not suitable 
for induction of cell adhesion. These structures with 
micro sized irregularities hamper cell spreading, cell 
proliferation and cell differentiation. Cells induce traction 
forces due to their adhesion process. Because of these 
forces cell do not attach, spread, and survive on the highly 
soft and deformable substrate. Surface of substrate having 
specific nanopattern promotes the zone selective cell 
adhesion and growth. These features can be favorable 
options in the field of tissue engineering [61].  

 
Gold nanoparticles have been utilized in biological and 

biomedical fields as labeling, delivering, sensing and 

heating agents [28,29,62]. Tissue engineering and 
regenerative medicine are focused to develop a suitable 
substitute that ensures restoration, maintenance, and 
improves the damaged tissues structurally and 
functionally. Nanotechnology is playing its significant role 
in many fields and tissue engineering and regenerative 
medicine are also being supported by its products. 
Nanomaterials offer broad scope for the suitable 
materials to be used as substitute. This is because of their 
unique physicochemical features and the ease with which 
these can be modified. Most of the nanomaterials are 
biocompatible and cytocompatible in comparison to the 
microsized materials. Tissues like bone, cartilage, 
vascular, neural and urinary bladder tissues have shown 
good results with respect to their maintenance, growth 
and functionality [60]. Gold nanoparticle (60nm) 
enhanced cell proliferation in case of human periodontal 
ligament cell in vitro. These nanoparticles also enhanced 
cell differentiation in case of osteoblast cells but did not 
influence the cell differentiation in case of adipogenic 
cells. The cell differentiation process for osteoblasts and 
their functions are regulated by transcription factors. The 
related factors are collagen type-1 (Col-1), Raunt related 
transcription factor-2 (Runx-2) bone sialoprotein (BSP) 
and osteocalcin (OCN). The expression of these 
transcription factors are also influenced by gold 
nanoparticles [63].  

 
Role of protein during cellular adhesion is well evident 

and so is the adherence of cell to protein resistant surface. 
Modified gold nanoparticles as 3D topographical gold 
nanoparticle layer by chemical plating were fabricated. 
Other set of gold nanoparticles were considered as 
smooth nano form. Both forms were subjected to study 
cell adhesion comparatively. More cells adhered to 
topographically fabricated gold nanoparticles in 
comparison to the non-topographically modified 
structures. The degree of cell adherence was firm and 
quantitatively more on topographically modified gold 
nanoparticles. The cells that adhered to these 
nanoparticles developed lamlipodia and filopodia [59].  

 
The fate of cell under stress depends on the type, 

duration, exogenous parameters and cellular ability to 
survive. Stressed Cells exhibit some form of interplay 
after which the decision is made either for survival or 
death. These cells may undergo death involving any of the 
processes like apoptosis, necrosis, autophagic cellular 
death or pyroptosis and autophagy. The implication of 
medical aspects of cellular stress may induce health 
issues, pathogenesis, like diabetes, neurodegenerative 
diseases like Parkinson’s disease, myocardial infarction, 
cancer, and untimely senescence [64,65].  
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Nanomaterials are among the most suitable options as 
diagnostic tools because these can be conveniently 
formulated to be used appropriately as theranostics for 
the treatment of ailments. Specifically designed 
nanoparticles have the ability to identify, reach and 
interact with the target cells or tissues causing minimum 
derogative impacts. These specifically fabricated 
nanomaterials reach the site of injury and provide desired 
profile of drug release. Nanomaterials have features like 
surface plasmon resonance, specific high surface reactive 
area, magnetism, the ability to get structurally modified 
and ability to move across most of the biological barriers 
[2]. These little wonders become better alternatives in 
comparison to the traditional diagnostic and therapeutic 
techniques [66].  

 
Nanoparticles show physicochemical features and 

ability to get modified as per the requirements for specific 
applications. These nanomaterials may be carbon based, 
organic, and inorganic in nature. These are applied in 
medical, biomedical, biotechnological, biomolecular, 
materials science, tissue engineering, DNA technological, 
enzyme immobilization and pharmacological fields. 
Liposomes and polymer are organic nanomaterials used 
as drug and biomolecule carriers. Metallic nanoparticles 
are potential options for imaging techniques as contrast 
agents and formulations for conjugate ligand. Metal oxide 
nanoparticles are preferably used during antioxidative 
and catalytic activities, drug delivery and as biosensors. 
Ceramics and quantum dots are used as drug vehicles, 
bioimaging and biosensors. Fullerene and carbon 
nanotubes are suitable as imaging agents [67]. 

 
Liposomes are effective agents for drug delivery 

specifically during the treatment of cancer. These are 
used to carry bioactive substances like peptides, enzymes, 
therapeutic drugs and food ingredients. Such 
nanomaterials are biocompatible and biodegradable 
[68,69]. Polymeric nanomaterials are biodegradable and 
biocompatible hence are very useful agents for drug 
delivery. Natural polymers like chitosan, synthetic 
polymers such as polylactides, polymethylacrylate, and 
polyethylene glycol etc are used in biomedical and 
pharmaceutical fields. Their surfaces can be readily 
modified suitably and sized so that their solubility, 
dispersibility can be regulated [70].  

 
Metal oxide nanoparticles like titanium di oxide (TiO2), 

iron oxide (Fe3O4), zirconium (ZrO2), Cerium oxide (Ceria) 
(CeO2) are being used as in biomedical and 
pharmaceutical fields because these metal oxides are 
efficient catalytic agents and possess good antioxidant 
capacity. Doped zinc oxide nanoparticles have potential to 

reduce inflammatory oxidation and also act as effective 
agent for bio-imaging [71]. Cerium oxide (CeO2) is good 
autocatalyst and has effective antioxidant properties. It 
also acts as a useful cell labeling agent for MRI contrast 
imaging. Such nanomaterials are good options as remedy 
to treat spinal injury, stroke and degenerative retinal 
conditions [72]. Magnetic iron oxide nanoparticles, 
supraparamagnetic iron oxide, small supraparamagnetic 
iron oxide are being used because of their ‘longer blood 
shelf-life’. These are also preferred as contrast agent for 
MIR techniques to investigate atherosclerotic plaque. 
Other nanoparticles used for MRI are ‘lipid-encapsulated 
perfluorocarbon emulsion’ with godalium and 
nanoparticles having high density lipoprotein.  

 
Ceramic nanoparticles are inorganic porous materials. 

Some of them are most suitable as carriers for drugs, 
proteins, peptides and enzyme immobilization. This is 
because their porosity is not compromised due to either 
swelling or impact of temperature or pH of their ambient 
environment. CeO2 is one of the common ceramic 
nanomaterials that is used as capped mesoporous silica 
nanomaterial as drug carrier for treating lung cancer. 
Other ceramic nanomaterials are clay minerals, cement, 
glass, bio-ceramics etc. These are used in dental, 
orthopedics, material science, tissue engineering and 
other biomedical applications. Calcium phosphate, 
calcium sulfate and carbonate, tricalcium phosphate, 
hydroxyapatite, tricalcium phosphate hydroxyapatite, 
bioreactive glass, bioreactive glass ceramic, titania based 
ceramic, alumina ceramics, zirconia and ceramic 
polymers composite are the examples of ceramic 
nanomaterials being used in nanotechnology. These 
ceramic nanomaterials are extensively used in 
orthopedics, regeneration of bone, tissue development, 
tissue engineering, nanomedicine and other biomedical 
applications.  

 
Quantum dots are made of semiconductor matter with 

fluorescent features and or photo-luminescent properties. 
Their core is made of semiconductor matter. Some of the 
common quantum dots are cadmium/selenium (Cd/Se), 
cadmium/tellurium (Cd/Te), indium phosphate (In/P), 
indium arsenate (In/As) etc. Some of the quantum dots 
have outer coat (shell) of zinc sulfide that acts as a 
protective measure against leakage of toxic heavy metal. 
This also elevates their optical and physical features so 
that these are suitably used in bioimaging and bioassay 
techniques. These nanomaterials exhibit better 
functionality in comparison to the organic fluorescent 
dyes. The quantum dots interact with biomolecules 
conjugating with them specifically when active groups 
like carboxyl, thiol, epoxy, hydroxyl and aldehydes are 
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bound on to their surface. Conjugation between quantum 
dots and biomolecules is dependent on factors like size, 
surface properties of quantum dots. The conjugation 
process is selectively specific with respect to varied 
applications [73]. Quantum dots also get conjugated with 
biomolecules like proteins, peptides, oligonucleotides. 
These nanomaterials in conjugated form enhance their 
chances of binding with desired or designated sites. Gold 
quantum dots possess colorimetric properties but not 
fluorescent properties. These quantum dots exhibit 
enhanced surface plasma resonance related to shape, size, 
solvency (dissolvability), ligand and functionalization of 
their surface. These nanomaterials also have dielectric 
properties and tendency of agglomeration. Because of 
these unique features quantum dots are among preferred 
options for detection of DNA sequencing, hybridization 
assay, genetic disorders, immunoblot assay etc. Fullerene 

and carbon nanotubes are carbon based nanomaterials 
that are commonly preferred options for biomedical 
applications. Generally pristine carbon nanotubes are 
likely to be toxic functionally but if their surface 
chemistry is functionalized or modified these 
nanoparticles become suitable to be used in 
pharmacological applications. When functional groups 
like -COOH, -OH and -CO are added on to the surface of the 
formulated carbon nanotubes these are either less toxic 
or behave in non-toxic manner. The ultra short single 
walled nanotubes (SWCNT) are used as non-viral vectors. 
These are effective carriers for oligonucleotides 
molecules for their applications in the fields of 
biomolecular and biomedical sciences. Non-covalent 
interactions of carbon nanotubes are biocompatible hence 
these are used in biomolecular, biomedical and 
biotechnological fields (Figure 1). 

 
 

 

Figure1: Graphic Representaion of Influence of Nanomaterials (Nms) On Cell. 
 

 
The investigations on human genome sequencing 

indicate that around 1.5% of DNA sequence codes for 
proteins and major portion (98.5%) is related to code for 
non-coding RNAs. This observation suggests that there 
are options to formulate theranostics that involve RNA 
targeting drugs and RNA drugs. This option is in addition 
to chemical and protein drugs. Currently an effort is being 
made to use stable RNA as a potential option to formulate 
drug for the treatment of cancer. Theranostics related to 
RNA are very special because the scaffold, ligands, and the 
components of theranostics primarily involve RNA. Their 
physicochemical features facilitate appropriate delivery of 

siRNA, miRNA, ribozyme or ribowitches. Some of the 
imaging techniques involve fluorogenic RNA and RNA 
aptamer. These help the theranostics to reach the specific 
target [75-77]. Thus, nanotechnology is an open field to 
investigate and study the mechanism of cell stress caused 
due to nanomaterials with reference to the medical 
implications.  
 

Conclusion 

The stress in bio-system is due to physical forces, 
deficient resources, infection, toxins, change in cellular 
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ambient environment and some undefined stressors. 
During cellular stress there is increased degree of 
fluctuations in the metabolic aspects of DNA, RNA, protein 
signaling pathways etc. Cells under stress exhibit adaptive 
behavior or sustenance behavior. If a cell fails then it may 
undergo derogative changes related to proteins, 
senescence, (permanent rest), and/or trigger cell death. 
Generally stress is the impact of some of the factors like 
molecular flux, flow and change in body fluid, intrinsic 
and extrinsic cellular movements, change in temperature 
etc. This aspect is of significance in biological, biomedical, 
tissue engineering and tissue replacement therapy. 
Nanotechnology is playing a significant role in many 
fields. Tissue engineering and regenerative medicine are 
no exception to this technology. Nanomaterials offer 
broad scope for the suitable materials to be used as 
substitutes. Cell culture plays very significant role for 
applications in tissue engineering. Nanotechnology and 
nanomaterials have enormous potential to either correct 
or improve the efficacy of the existing tissue technology 
and tissue engineering. Cell culture and stem cells 
technologies have natural features that facilitate 
transformation of special type of cells and other aspect 
like genetic manipulation, and other interactions in 
relation to nanomaterials. Stem cells are considered as a 
suitable tool for replacing cells technique in the field of 
regenerative medicine. The conventional modes to 
transfer gene to the progenitor cells are unsafe and 
exhibit lower degree of efficacy. Nanomaterials are a 
better option in these technologies with intentions of 
more experimentation to fill the existing lacunae.  
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