
                                                          Cell & Cellular Life Sciences Journal 
ISSN: 2578-4811

Reshaping the Immunosuppressive Tumor Microenvironment: The Fusion Protein Strategy              Cell Cellular Life Sci J 

 
 

Reshaping the Immunosuppressive Tumor 

Microenvironment: The Fusion Protein Strategy 

 

Yanzhang Wei* 

Department of Biological Sciences, Clemson University, Clemson, SC USA 

*Corresponding author: Yanzhang Wei, Department of Biological Sciences, Clemson 

University; 190 Collings Street, Clemson, SC 29634, USA, Tel: 864-656-7393; E-mail: 

ywei@clemson.edu 

  Abstract                                                                                                                                                             

Advanced tumor cells often create immunosuppressive tumor microenvironment to block immune system’s attack in 

defense. The conversion of the environment from immunosuppressive to immune active holds hopes for effective 

cancer immunotherapies. Fusion proteins coupled with appropriate delivery approaches represent a promising 

strategy for this conversion. In the last decade, a variety of fusion cytokine proteins (GPI-anchored IL-2/IL-12, 

RGD/Fc, MULT1E/FasTI, MULT1E/IL-12, and IL-12/FasTI) have been created and tested for their anti-cancer 

activities in a series of in vitro and in vivo studies. The efforts are going on to develop effective method to deliver the 

fusion proteins specifically into tumors. 
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Introduction 

     Recent progresses in tumor immunology have not only 
enhanced our understanding of the immune system’s role 
in tumor development but also opened new windows for 
developing new therapies for cancer treatment [1]. A three 
“E” theory (elimination, equilibrium, and escape) has been 
posted to explain how tumor cells escape from 
immunosurveillance through a process called immune 
editing. In phase I, cancer cells in their early development 
are recognized and destroyed by the immune system. 
Major anticancer players in this phase include natural 
killer (NK) cells, cytolytic T lymphocytes (CTLs), NKT cells, 
CD4+ helper T cells, M1 macrophages together with two 
major cytokines: interleukin-12(IL-12) and interferon-γ 
(IFN-γ). In phase II, some cancer cells acquire mutations 
that allow them to resist immune destruction, but their 
proliferation and spread are still limited by immune 
responses. In phase III, further mutations in the surviving 

or advanced tumor cells lead to the capacity for immortal 
tumor growth and metastasis. In this phase, although 
some immune cells, such as CTLs or helper T cells, still 
exist, their function is largely inhibited; IL-12 production is 
also greatly suppressed. The immune activity shifts from 
anti-to pro-tumor growth due to the inhibitory cytokine 
production by tumor cells: TGF-β, IL-10, CCL-22, CXCL-12, 
COX02, PGE2, etc., and the significant recruitments of 
regulatory T cells (Tregs) and myeloid derived suppressor 
cells (MDSC) to the tumor site [2,3]. In addition, tumor 
cells also produce cytokines, such as tumor necrotic factor-
α (TNFα), IL-1,IL-6, CCL2, COX-2 which promotes chronic 
inflammation and vascular endothelial growth factor 
(VEGF) which promotes angiogenesis. Both processes 
lead to significant tumor growth [4,5]. 
 
     As information about tumor immunosurveillance and 
tumor immune editing is accumulating, various strategies 
have been attempted with the goal of developing effective 
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cancer immune therapies. These include adoptive transfer 
of monoclonal antibodies [6-8], T cells, or chimeric antigen 
receptor (CAR) engineered T cells [9, 10] and cancer 
vaccines, including whole-cell vaccine [11], tumor antigen 
vaccine [12], or dendritic cell mediated cancer vaccines 
[13]. Although many of these immunotherapeutic 
approaches showed promising results in animal models 
and are relatively safe compared to conventional cancer 
treatment regimens, their clinical efficacies are mostly 
disappointing due to the lack of strategies to 
systematically tackle the immunosuppressive tumor 
microenvironment [1]. 
 
     Therefore, how to reshape the tumor microenvironment 
to favor antitumor immune responses or how to break the 
immune tolerance created by advanced tumor cells is 
becoming critical in order to develop effective cancer 
immune therapies. In the last decade, our focus has been 
on the development of fusing cytokine proteins, which 
when delivered into tumors will be able to revive the 
immune cells activity and control tumor growth. 
 

Rationale 

     Three groups of proteins, IL-12, stress proteins and Fas 
play critical role in the fighting between the immune 
system and tumor cells. We, therefore, have been focusing 
on these three proteins in our efforts to develop 
multifunctional proteins for cancer immunotherapy. 
 
IL-12: Observations of a relationship between cancer 
regression and infection date back to the 18th century and 
was confirmed clinically by Dr. Coley [14]. Although 
Coley’s toxin is still controversial, it is claimed that IL-12 
is the key cytokine responsible for the observed cancer 
regression [15]. Recent studies agree that IL-12 plays a 
central role in antitumor immune surveillance and the 
elimination of IL-12 production is one of the key factors 
affecting the anti-to pro-tumor transition in tumor 
microenvironment [16]. Severe toxicity of systemic IL-12 
impedes the application of this effective therapy [17]. 
Therefore, a locally high level expression of IL-12 within 
the metastatic tumor microenvironment in the form of 
bifunctional proteins (IL-12/FasTI and MULT1E/IL-12) 
will effectively engage the IL-12R pathways of various 
immune cells and significantly improve their anticancer 
function without the systemic side effects. 
 
Stress protein: Most tumor cells at their early 
development stage express stress proteins, such as MHC 
class1 chain related protein A and B(MICA, MICB), unique 
long 16 binding protein (ULBP), and ribonucleic acid 

export 1 like transcript (RAET1) for human or UL16-
binding protein-like transcript 1 (MULT1), retinoic acid 
early transcript 1 (Rae1), histocompatibility 60 (H60) for 
mouse. These stress proteins are ligands to activating 
receptor NK group 2 (NKG2) of receptors as member 
D(NKG2D) on NK cells, CTLs, and other immune killer 
cells and this way of the engagement of NKG2D path way 
is the most effective way to activate the immune cells 
[18]. Unfortunately, advanced tumor cells tend to devise 
strategies to down-regulate or shed off these proteins to 
avoid immune cells’ killing [19]. Labeling of advanced 
cancer cells with these stress proteins in the form of 
bifunctional proteins (MULT1E/FasTI, MULT1E/IL-12, 
and MICA/FasTI) will effectively engage the NKG2D 
pathway to activate the immune cells. 
 
Fas: Fas is a transmembrane cell surface death receptor. 
The intracellular portion of Fas contains a death domain 
that is essential for transducing the apoptotic signal [20]. 
Several of our fusion proteins combined the 
transmembrane and intracellular domains of Fas with 
either of the extracellular domain of MULT1 or IL-12 as 
bifunctional proteins. The engagement of MULT1 portion 
of the protein to NKG2D or IL-12 portion of the protein to 
IL-12R will not only activate the corresponding immune 
killer cells, but also send apoptotic signals through the Fas 
portion of the proteins to kill tumor cells. 
 

GPI-anchored IL-2/IL-12 

     While cancer immunotherapy with IL-2 and/or other 
cytokines has proved effective in activating immune 
responses against tumor cells, the major obstacle with the 
use of these cytokines in cancer patients is their severe 
side effects when delivered systemically at high doses [21, 
22]. In an effort to overcome this problem, a fusion 
protein containing human IL-2 and a glycoinositol 
phospholipid (GPI) anchor sequence of decay accelerating 
factor (DAF) was generated. When expressed by 
transfected cells, these fusion proteins were presented on 
the cell surface in the GPI anchored form as demonstrated 
by fluorescent activated cell soring (FACS) and enzyme-
linked immune sorbent assay (ELISA) analyses. This GPI-
anchored IL-2 is highly functional as indicated by 
significantly increased T cell infiltration in tumor masses. 
Immunohistochemical analysis of tumor cells isolated 
from experimental tumors indicated that a local high level 
of IL-2 was achieved by GPI anchored IL-2. More 
importantly, when injected into mice intravenously, the 
growth of mouse B16F0 melanoma cells that were 
engineered to express this fusion protein was significantly 
inhibited. In contrast, the inhibition of secreted IL-2 on 
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tumor growth was not observable in this study [23]. We 
then expended the idea and created GPI-anchored IL-12. 
In vitro and in vivo studies showed that GPI anchored IL-
12 is functional as indicated by increased T lymphocyte 
infiltration in tumors and has anti-tumor activity. More 
importantly, a synergistic anti-tumor effect was observed 
when GPI anchored IL-12 and GPI anchored IL-2 were co-
delivered [24]. 
 

RGD/mFc 

     Targeting tumor vasculature represents an interesting 
approach for the treatment of solid tumors. The v3 
integrins have been found to be specifically associated 
with angiogenesis in tumors. By using bacteria phage 
display technology, Ruoslahti [25] found that a group of 
peptides containing the RGD (Arg-Gly-Asp) motif have 
high binding affinity to the v3 integrins in tumors. A 
fusion protein containing the RGD sequence and the Fc 
fragment of mouse IgG was designed in order to target the 
Fc portion of IgG to the tumor vasculature to elicit an anti-
angiogenesis immune response. In vivo angiogenesis and 
tumor studies demonstrated that fusion protein RGD/mFc 
inhibited tumor angiogenes and tumor growth and 
improved overall survival [26]. 
 

MULT1E/FasTI 

     Tumor cells evade immunosurveillance by elements of 
the innate immune system, such as NK cells, by down 
regulating or "shedding" certain cell surface molecules 
like MULT1 that can activate NK cells through NKG2D; 
they also avoid Fas mediated apoptosis by down 
regulating its expression. We designed and evaluated the 
antitumor activity of a fusion protein, MULT1E/FasTI, 
consisting of the extracellular domain of MULT1 and the 
transmembrane and intracellular domains of Fas. The 
fusion construct (pMULT1E/FasTI) was transfected into 
the mouse pulmonary carcinoma cell line TC-1; and there 
by stable cell clones expressing the fusion protein were 
established. In vitro cell culture studies demonstrated that 
the binding of the NKG2D/Fc, a recombinant protein of 
mouse NK cell receptor, to MULT1E/FasTI expressed on 
tumor cells was able to elicit apoptosis as assayed by 
Annexin V-FITC staining and caspase-3 ELISA. The fusion 
protein was also able to bind to NKG2D and activate 
NKG2D expressing cells, such as NK cells. In vivo 
subcutaneous tumor studies demonstrated that tumor 
cells expressing MULT1E/Fas TI grew significantly slower 
than cells without the protein. Pulmonary metastasis 
studies showed that most of the mice completely rejected 
tumor cells expressing MULT1E/FasTI. [27] We then tried 
to use an adenoviral gene delivery system to deliver this 

fusion protein and demonstrated that adenoviral vector 
can efficiently deliver the MULT1E/FasTI fusion protein 
into TC-1 cells both in vitro and in vivo as assayed by RT-
PCR, FACS analysis, caspase 3 activity and decreased in 
vivo tumor growth [28]. 
 

MULT1E/IL-12 

     NK cells have the potential to be effective killers of 
tumor cells. They are governed by inhibitory and 
activating receptors like NKG2D, whose ligands are 
normally up regulated in cells that are stressed, like 
cancer cells. Advanced cancer cells, however, have ways to 
reduce these ligands’ expression, leaving them less 
detectable by NK cells. Along with these receptors, NK 
cells also require activating cytokines, like IL-12. We 
proposed and created a fusion protein combining the 
extracellular domain of MULT1 and mouse IL-12 with a 
hypothesis that when expressed by tumor cells, the 
protein will activate NK and other killer cells using the 
NKG2D receptor, and deliver mIL-12 to the NK cells 
where it can inter act with the IL-12R and enhance 
cytotoxicity. The fusion protein, when expressed by 
engineered tumor cells, indeed activated NK cells in vitro 
as assayed by increased production of INF-γ and 
cytotoxicity and significantly reduced tumor growth in 
vivo [29]. We then expanded the concept of developing a 
novel bifunctional fusion protein for enhanced NK cell 
activation to human killer cells. This time, MULT1E 
portion of the fusion protein was replaced with a human 
stress protein MICA. It is hypothesized that when 
expressed by tumor cells, the protein will activate human 
NK and other killer cells using the NKG2D receptor, and 
deliver IL-12 to the NK cells where it can inter act with 
the IL-12R and enhance cytotoxicity. The fusion protein, 
when expressed by engineered tumor cells, indeed 
activated NK 92 cells as measured by an increase in IFN-γ 
production and an increase in cytotoxicity of tumor cells. 
The fusion protein was also able to increase the 
proliferation of human peripheral blood mononuclear 
cells (PBMCs) and augment their production of IFN-γ 
[unpublished data]. 
 

IL-12/FasTI 

     Whereas cancer immune therapy with cytokines in 
recent researches demonstrated them to be effective in 
activating immune response against tumor cells, one 
major obstacle with the use of these cytokines is their 
severe side effects when delivered systemically at high 
doses. Another challenge is that advanced tumor cells 
often evade immunosurveillance of the immune system as 
well as of the Fas-mediated apoptosis by various 
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mechanisms. We designed and evaluated the antitumor 
activity    of    another      fusion     protein,    mIL-12/FasTI,  
consisting of mouse IL-12 and the transmembrane and 
intracellular domains of mouse Fas. The fusion construct 
(pmIL-12/FasTI) was transfected into mouse lung 
carcinoma cell line TC-1. Stable cell clones expressing the 
fusion protein were established as assayed by RT-PCR 
and immunohistochemistry. ELISA and cell proliferation 
analyses demonstrated that NK cells were effectively 
activated by the fusion protein with increased IFN-γ 
production and cytotoxicity. Enhanced caspase 3 activity 
of the clones when co-cultured with NK cells indicated 
that apoptosis was induced through Fas/FasL signaling 
pathway [30]. 
 

Fusion Protein Delivery into Tumor Cells 
     

 
 
Figure 1: Immune reactivation and apoptosis induction 
in breast cancer using nano-technology. 1. Plasmid DNA 
loaded PLA-PEG-NP; 2. G129R/pHLIP conjugated, 
plasmid DNA loaded NPs; 3. NP binds to breast cancer 
cell via PRLR and pHLIP; 4. Plasmid DNAs delivered into 
tumor cells; 5. Bifunctional proteins expressed; 6. 
Immune cell activated & tumor cells killed (Tumor cells 
not expressing the bifunctional proteins will also be 
killed by activated immune cells). 

 
     Although the above mentioned individual fusion 
cytokine proteins all demonstrated their enhanced anti 

cancer activities, challenge remains how to effectively 
deliver multiple fusion gene constructs simultaneously 
and specifically to tumors. Nanotechnology has been 
shown to be able to deliver various molecules, including 
small drug molecules, peptides, protein-based drugs, and 
nucleic acids into cells [31-33]. Plasmid DNA can be 
efficiently encapsulated into polylactide-co-
polyethyleneglycol (PLA-PEG) nanoparticles (NPs) by 
controlling processing/formulation parameters [34-40]. 
GenexolPM, composed of biodegradable and biocompatible 
PLA-PEG, has been approved in Korea for breast cancer 
therapy and in clinical trials in the US for multiple types of 
cancer treatments including breast cancer [41,42]. Using 
breast cancer as a model, we propose to use PLA-PEG as the 
core to load with plasmid DNAs of multiple bifunctional 
fusion gene constructs to develop a unique NP based, breast 
cancer specific gene delivery system (Figure 1). 

 
Conclusion 

     Immunotherapy is considered a dream treatment for 
metastatic cancers due to immune system’s specificity and 
effectiveness. The potential impact of cancer 
immunotherapy and the importance of understanding and 
modulating the complex interplay among cell types and 
signaling pathways in the tumor microenvironment have 
been well recognized by the research field and the public. 
However, the currently available cancer 
immunotherapeutic approaches are generally inefficient 
and by an large ineffective due to lack of systematic 
strategies targeting at the immune suppressive tumor 
microenvironment, a hall mark of metastatic cancer. We 
are confident that an effective delivery of multi-functional 
fusion cytokine proteins into tumors will provide cancer 
patients with a new hope. 
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