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Abstract

Background: Alzheimer’s disease (AD) is the leading neurodegenerative disorder affecting memory, learning and behavior. 
Altered expression of proteins involved in neuronal structure and function is a recent observation of AD pathogenesis. 
Modulation of altered protein expression seems promising in AD therapeutics. In the present experiment, AD ameliorating 
effect of medicinal mushroom Ganoderma lucidum had been evaluated through its effect on neuronal cytoskeletal structure 
and function related protein expression pattern in AD model rats.
Methods: Wistar male rats (120 ± 5gm) were divided into three groups: control (C), AD (A) and G. lucidum hot water extract 
(HWE) fed AD (AE), each group containing 15 rats. AD model rats were prepared by infusing Aβ1-42 (ab120959, abcam, 
USA) into the cerebral ventricles. Protein extraction from the brain samples was performed following homogenization of the 
hippocampus (50 mg ) with lysis buffer (1ml) using a homogenizer (Polytron PT 1200, Kinematica). Protein separation through 
SDS-PAGE and protein quantification through LC-chip MS/MS Q-TOF had been performed for label-free relative quantification. 
For statistical analyses, the data were exported to the Mass Profiler Professional (MPP) software and ANOVA (P<0.05) had 
been performed to overcome the complications of false discovery associated with multiple test analyses. Functional interaction 
networks of the proteins were identified using the STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) 
database (version 10.0; http://string-db.org/). For further identifying over-representing pathways and biological functions, 
the ingenuity pathway analysis (IPA), build version: 389077M, content version: 27821452, (Release date: 2016-06-14) was 
used (https://www.ingenuity.com/wp-content/themes/ingenuity-qiagen). Datasets of the proteins significantly expressed 
(P<0.05) and having log fold change of 1.5 and higher were uploaded (AD versus C, AD versus AE and C versus AE). 
Results: Among 2,212 proteins identified in the present study, 819 had been found to be differentially expressed. Of the 
differentially expressed ones, 9 proteins had been linked with neuronal cytoskeletal structure and function regulation such as 
tubulin, β-actin, dihydropyrimidinase-related protein 2 (DRP-2), keratin, glial fibrillary acidic protein (GFAP), Rho A proteins, 
septin, cofilin, gelsolin and dynamin. AD rats manifested altered expression of proteins associated with neuronal structure and 
function. G. lucidum hot water treatment ameliorated the altered expression of those proteins.
Conclusions: Altered expression of hippocampal proteins is a hallmark of AD. Neuroproteomics regulatory approach towards 
AD amelioration seems promising. Inclusion of G. lucidum for proteomics based AD therapeutics in regulation of the proteins 
involved in neuronal structure and function seem apt. Thus, G. lucidum could be considered as an AD therapeutic agent.
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Abbreviations: A: Alzheimer’s disease model rat; AE: 
Ganoderma lucidum hot water extract fed Alzheimer’s 
disease model rat; C: Control rat; AD: Alzheimer’s disease; 
GL: Ganoderma lucidum; HWE: Hot water extract; FC: fold 
change of protein: KDa: Killo Dalton; M.wt: Molecular weight; 
PPI: Protein-protein interaction; IPA: Ingenuity pathway 
analysis; STRING: Search Tool for the Retrieval of Interacting 
Genes/Proteins.

Introduction

According to United Nations Education Scientific and 
Cultural Organization (UNESCO), mushroom had included in 
the Ben Cao Gang Mu [(本草纲目), the first pharmacopoeaia 
in China, compiled during Ming dynasty (1590 AD)] as an 
aesthetic, spiritual and therapeutic agent [1,2]. Medicinal 
mushroom, Ling zhi (Ganoderma lucidum) has 2000 years-
old reputation of usage in the Chinese medicine [3]. The State 
Pharmacopoeia of the People’s Republic of China (2000) 
has incorporated G. lucidum as the potent replenisher of Qi 
(life force), salient mind soothening and cough relieving as 
well as anti-asthmatic agent [2]. Modern medicinal sector 
also acknowledge its inclusion as a therapeutic agent against 
numerous physiological disorders including, but not limited 
to, antioxidant, anti-inflammatory, antitumor, anticancer, 
antimicrobial, immunomodulatory and hepatoprotective 
agent [3-7]. Content of more than 400 gano-components had 
accredited Ganoderma as the “fungal biofactory”, “panacea” 
and the “elixir of life” [3-7]. Gano-components conferring 
medicinal values range from polysaccharides to triterpenes, 
sterols, proteins, peptides, fatty acids and vitamins [3-
7]. Recently, utilization of G. lucidum in ameliorating 
neurodegenerative diseases like Alzheimer’s disease (AD), 
have received epoch-making attention [8]. We have also 
observed promising effect of G. lucidum as an AD therapeutic 
agent [9-15].

AD is a neurodegenerative disorder affecting mostly the 
elderly people is posing threat to the ever increasing aged 
humanity of the world. Currently, more than 46 million 
people over the world have been suffering from AD and 
this number had been projected to double by 2050 [16,17]. 
AD patients suffer from progressive loss of memory and 
learning abilities, behavioral abnormalities, disorientation 
about time and space, inability to smell and taste, difficulty in 
performing errands [17]. At severe stage, they become solely 
dependent on their family members and care-givers that lays 
extra economic burden on national and global health-care 
budget. Though the number of AD patients is skyrocketing, 
the world still awaits successful medication against this 
age-onset malady. AD occurs due to loss of neurons and 
synapses associated with memory, learning and behavioral 
performances [17]. Since its identification in 1901, different 

hypotheses relating AD pathogenesis had been put forward. 
Among them, genetic predisposition, formation of amyloid 
beta (Aβ) plaques, neurofbirbillary tangles (NFT) and 
mutation had received attention [14]. Recently, proteomics 
approaches towards understanding the mechanism and 
modulation of AD pathogenesis has received high attention 
[10,18-21]. Differential expression of proteins between AD 
and normal subjects would aid in formulating therapeutic 
strategies against AD. Though different approaches of AD 
therapeutics had been linked with G. lucidum, there is scarcity 
of reports describing AD neuroproteomics modulating effect 
of G. lucidum. Thus, the present study had been designed 
to evaluate the AD neuroproteomics modulatory effect of 
G. lucidum, especially the expression pattern of proteins 
involved in maintaining neuronal cytoskeletal structure and 
function.

Materials and Methods

Animals

Wistar male rats (120 ± 5 gm) were divided into three 
groups: control (C), AD (A) and G. lucidum hot water extract 
(HWE) fed AD (AE), each group containing 15 rats. AD model 
rats were prepared by infusing Aβ1-42 (ab120959, abcam, 
USA) into the cerebral ventricles following an established 
method [22]. All the experimental protocols had been 
approved by the ethical permission committee, University 
of Malaya Institutional Animal Care and Use Committee 
(UMIACUC) [Ethics reference no. ISB/25/04/2013/NA (R)].

Brain Sample Preparation and Protein 
Quantification

Following our previously established method [10], rat 
brain samples had been prepared and protein quantified 
in the hippocampi of C, AD and AE rats. Briefly, protein 
extraction from the hippocampi had been performed by 
homogenization (brain sample 50 mg; lysis buffer 1ml; 
homogenizer Polytron PT 1200, Kinematica); protein 
separation had been performed through SDS-PAGE [mini-
PROTEAN tetra cell (165-8000, BIO-RAD, USA)] and 
protein quantification through LC-chip MS/MS Q-TOF [10]. 
To identify the proteins, the acquired MS/MS data were 
compared against the UniProtKB/Swiss Prot rat (Rattus 
norvegicus) database using the Spectrum Mill and X! Tandem. 
The differentially expressed proteins in the different groups 
were identified using their canonical sequence and proteins 
having fold change of at least 1.5 times were considered as the 
deregulated proteins. For validation of the identified proteins, 
the data were exported to the Scaffold database (version 
4.5.1, Portland, USA). Proteins were grouped together if 
they would share at least two peptides and maintained their 
threshold level at 95.0% and <1% false discovery rate (FDR) 
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by the Peptide Prophet algorithm with Scaffold delta - mass 
correction for the matched peptide-spectra.

Statistical Analysis

Data had been exported to the Mass Profiler Professional 
(MPP) software that analyzed depending on the MPP entities, 
the intensity of the total spectra of the proteins. Analysis 
of variance (ANOVA) had been performed to overcome the 
complications of false discovery associated with multiple 
test analyses.

Bioinformatics and Analysis of Protein-Protein 
Interaction (PPI)

Most of the proteins do not work singly rather they 
participate in complex network or scaffold and interact 
with others. Thus, analysis of the relevant protein-protein 
networks provides important information in deciphering 
any bio-molecular system. Functional interaction networks 
of the proteins were identified using the STRING (Search 
Tool for the Retrieval of Interacting Genes/Proteins) 
database (version 10.0; http://string-db.org/). STRING 
displays protein-protein interactions in a large network of 
connectivity and protein hubs. Active prediction methods 
that we used were experiments, neighborhood, databases, 
gene fusions, coexpression, cooccurrence and text mining, 
using high confidence (0.7).

For further identifying over-representing pathways 
and biological functions, the ingenuity pathway analysis 
(IPA), build version: 389077M, content version: 27821452, 
(Release date: 2016-06-14) was used (https://www.
ingenuity.com/wp-content/themes/ingenuity-qiagen). 
Datasets of the proteins significantly expressed (P<0.05) and 
having log fold change of 1.5 and higher were uploaded (AD 
versus C, AD versus AE and C versus AE). 

Results and Discussion

Differential Expression of Proteins Involved in 
Neuronal Cytoskeleton Maintenance

Differential expression of the proteins involved in 
maintaining neuronal cytoskeletal structure and function 
had been observed in the present study. Derangement of 
neuronal cytoskeleton through microtubule disassembly is 
an important feature of neurodegeneration [23]. STRING 
analysis revealed strong networks among the microtubule 
assembling cytoskeletal proteins such as tubulin, β-actin, 
dihydropyrimidinase-related protein 2 (DRP-2), keratin, 
glial fibrillary acidic protein (GFAP), Rho A proteins, septin, 
cofilin, gelsolin and dynamin.

Tubulin

AD neurons suffer from disrupted microtubule structure 
and functioning [24]. Tubulin is the main component 
of microtubule and consists of dimers imparted by the 
alpha and beta chains. Differential expression of tubulin 
α -1c, -4a, β -2a, -2B, -3 and -5 chains were observed in 
the present study. Molecular function based sub-network 
analysis showed different tubulin chains to be clustered 
together and deranged in AD. Both animal and human 
studies have linked decreased level of α and β tubulin 
with human AD [25,26]. In AD brain, β tubulin becomes 
abnormally hyperphosphorylated and modified tubulin 
fails to assemble microtubules. Consequently, microtubule 
disassemblage leads towards cytoskeletal vulnerability [27]. 
Recently, microtubular disassembly has been implicated in 
causing “mitochondrial traffic jam” in the AD neurons as 
mitochondrial shifting across the “rail-road of microtubule” 
becomes impeded in the AD brain [28].

β-Actin

Normally, β-actin is involved in maintenance of 
cytoskeleton, internal cell motility, neuronal network 
integrity and aids in memory and learning performances. Its 
altered expression and oxidized form had been linked with 
AD pathogenesis [29]. Impaired expression of actin is in 
agreement with the synaptic dysregulation associated with 
AD and age-related altered cytoskeletal structure, axonal 
dystrophy, reduced dendritic spines and impaired transport 
across membranes [30]. Enhanced accumulation of actin 
enhances tau-governed neurotoxicity [31,32].

Dihydropyrimidinase-Related Protein 2 (DRP-
2): 

Dihydropyrimidinase related protein 2 (DRP2) is 
involved in regulation of axonal outgrowth and becomes 
hyperphosphorylated in NFT and its increased level is 
observed in AD model animals [33]. Compared to the normal 
neurons, AD neurons possess shortened dendrites which 
are a characteristic of their lowered communication with 
neighboring neurons [34]. DRP2 is expressed highly in the 
developing brains and altered in AD [35,36]. It regulates the 
activity of collapsin that elongates the dendrites, increases 
their communicability and repairs the damaged neurons 
[35,36]. Oxidative modification of DRP2 might cause reduced 
length of the dendrites and communication leading to 
lowered cognitive performance [37].

Glial Fibrillary Acidic Protein (GFAP)

Glial fibrillary acidic protein (GFAP) provides structural 
support to the astrocytes and its elevated level in AD model 
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animals and in human subjects [33,38]. Its differential and 
reduced expression has been reported in AD animal studies 
[39,40].

RhoA Proteins

Ras homolog gene family, member A (RhoA) proteins 
are involved in cytoskeleton regulatory processes such as 
dendrite development, axonal extension and protrusion 
[41]. They also stabilize the Aβ-disrupted microtubules 
[41]. A β increases RhoA-GTPases and decreases neuronal 
spine production and neural connection both in the cell lines 
and also in the brains of the transgenic AD models [42,43]. 
Inhibition of the RhoA/ROCK signaling pathway seems 
ameliorating towards axonal growth and cognitive decline 
[41].

Septin

Septins are microtubule associated filament-forming 
and GTP-binding proteins that participate in dendritic spine 
formation and in neurotransmitter release [44,45]. Like 
that of Musunury, et al. (2014) [46], increased expression 
of septin -2 and -3 were noted in the AD rats’ hippocampi. 
Its increased expression in the AD rats might be involved in 
disrupting microtubular filament formation and associated 
cytoskeletal derangement in the AD rats [47-49].

Cofilin

 Brain cofilin activity reduces with age and in the AD 
subjects, it goes down aberrantly [50]. Transgenic mice 
studies also showed its lowered expression [50]. However, 
unlike other cytoskeletal proteins, its levels have not been 
found to be up-regulated in AD ameliorating cases [51]. As 
cofilin is a regulator of actin, increased cofilin expression 
points towards increased actin turnover and increased 
depolymerization of actin filament [51].

Dynamin

Dynamin is a neuronal GTPase capable of free entry into 
and release from the synaptic vesicles [31]. Current finding 
of its decreased expression in the AD rats is consistent with 
those of others [52-55]. Aβ-induced depleted dynamin1 level 
has been found to impair memory in the AD model rats [53]. 
Although some other findings found its variable level, altered 
dynamin induced affected neurotransmitter release has 
commonly been correlated with AD pathogenesis [32,55].

Gelsolin

Gelsolin is a member of the actin-binding proteins 
having antioxidative, Aβ binding and fibrillation 
inhibitory potentiality [56-58]. Its overproduction and/or 

administration showed Aβ lowering effect and thus, gelsolin 
has been regarded as an AD therapeutic agent [59]. More 
importantly, administration or overexpression of gelsolin 
results in significant reduction of amyloid load and decrease 
of Aβ level in AD transgenic mice [56,59]. Down-regulated 
expression of gelsolin was noted in the AD rats’ hippocampus 
that is in par with those of Manavalan, et al. [60]. However, 
some studies have reported confounding results regarding 
the expression of gelsolin in AD brains [61]. 

PPI Network of the Upregulated Protein Clusters 

The upregulated proteins constituted the interaction 
network entailing microtubule assembly and cytoskeletal 
structure and function (Figure 1). The proteins involved in 
this network are sirtuin2 and tubulin with the corresponding 
genes Sirt2, Tuba1b, Tuba1c, Tubb2a, Tubb3, Tubb2b, Tuba4a, 
Tubb4a, Tubb4b, Tubb5 and Tubb6 (Figure 1).

Figure 1: Protein-protein interaction among the 
differentially expressed proteins.

An important feature of the present study is that some 
of the proteins differentially expressed in the AD model rats 
are highly interacted with each other and formed pathway-
based functional networks. This inter-relationship sets 
a novel ground for AD therapeutics. Thus, findings of the 
current research suggest a novel target for AD pathogenesis 
management and incorporation of G. lucidum as an AD 
ameliorating agent seems pertinent. Differential expression 
of the proteins in the mushroom-fed AD rats might either 
be an adaptive response or protective strategy against 
Aβ-mediated stresses. Admittedly, the regulated proteins, 
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identified in the current experiment but not previously been 
studied, warrants extensive exploration for much conclusive 
remarks. In this endeavor, western blot analysis of the mostly 
regulated proteins for validation of the current findings is 
the immediate future aspect of the present study. 

Conclusion

Present study indicates the Alzheimer’s disease 
modulatory effect of medicinal mushroom G. lucidum through 
differential expression of neuronal cytoskeleton regulatory 
proteins, restoration of disrupted protein-protein interaction 
network and maintenance of integrated pathways. Thus, 
utilization of G. lucidum in AD therapeutics seems promising. 
However, further studies should be carried out to determine 
therapeutic dosage, toxicity and safety.
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