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Abstract

The gut-brain axis plays an important role in bidirectional communication that exists and can be altered by injury. Neurotrauma 
provides acute alteration in the GI tract and alters autonomic function. In this focused review, we highlight what is known 
about GI disruption following neurotrauma. We then delve into how this affects recovery. Areas of innovation and emerging 
pre-clinical results are addressed. Finally, we address the link between neurotrauma induced GI dysfunction and progression 
to neurodegenerative disease states.  
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Introduction 

The established neuroscience paradigm called the 
“gut-brain axis” is a method of describing and interpreting 
the bidirectional communication that exists between the 
brain and the microbiota of the digestive system [1,2]. The 
physical connection between the two entities exists as the 
gastrointestinal (GI) organs are highly innervated by the 
central nervous system (CNS) and much enteric signaling 
originates from the gut [3,4]. Emerging research suggests 
that the health of the CNS is modulated by these interactions 
between gut microbiota and neurotransmitters [1,5,6]. The 
gut-brain axis is becoming more relevant to investigations 
regarding the biological basis of neurodevelopmental 
and neurodegenerative disorders [6,7]. Also, it has been 
studied extensively for its potential utility in regard to 
understanding the physiology of mental illness [1]. As 
traumatic head injuries have become an increasingly 

relevant public health issue, there have been new 
investigations into how the gut-brain axis may be altered 
because of neurotrauma and subsequent recovery. In fact, 
according to pre-clinical research, structural and functional 
damage to the GI tract is seen following head injuries, such 
as traumatic brain injury (TBI) [3,8]. Potential mechanisms 
mediating this phenomenon are beginning to be elucidated, 
including reduction in short-chain fatty acid (SCFA)-
producing microbiota in the gut post-TBI [9]. In addition, 
evidence that post-TBI alterations in gut microbiota may 
be sustained long-term has also begun to emerge [10]. 
The gut-brain axis may provide insight into a microbiota-
based model to support recovery following neurotrauma 
and, in doing so, provide insight into innovative treatment 
modalities to target dysfunction in the gut-brain axis 
following neurotrauma. 
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Materials and Methodology

The electronic databases PubMed/MEDLINE, 
ScienceDirect, and Google Scholar were searched for original 
articles spanning from 1982 to 2022, with an emphasis on 
recent articles published between 2012 and 2022. All articles 
were in English language and the searches were performed 
in June and July of 2022. Original articles searched and 
ultimately included are comprised of comparative studies, 
retrospective cohort studies, case reports, systematic 
reviews, other related review articles, observational studies, 
randomized control trials, and clinical trials.

Neurotrauma and the Enteric Nervous System

The CNS exists in close communication with the enteric 
nervous system (ENS) via a growing appreciation for the 
bidirectional gut-brain axis. Following neurotrauma, a 
systemic stress and inflammatory response occurs which 
has been proposed to disrupt this dynamically orchestrated 
axis and contribute to dysbiosis [11,12]. Perturbations 
within the autonomic nervous system (ANS), which directly 
communicates with the ENS through the gut-brain axis, 
is thought to play a key role in TBI-associated intestinal 
dysfunction [11,13]. The ANS is comprised of a sympathetic 
and parasympathetic branch and an imbalance between 
these two divisions may lead to the autonomic dysfunction 
commonly seen in TBI patients [14]. Although the ENS can 
function independently, its activity is extensively modulated 
by the ANS and, thus, a dysregulated ANS has potential 
to significantly alter ENS activity. The vagus nerve, a key 
neural pathway of the parasympathetic nervous system, 
innervates the gut from the esophagus to mid-colon and is a 
key modulator of secretomotor GI function [15]. Originating 
in the nucleus ambiguus and the dorsal motor nucleus in 
the brainstem, vagal fibers ultimately synapse directly onto 
the ENS plexuses to promote secretions and motor activity 
[11,15]. On the other hand, post-ganglionic sympathetic 
fibers originating from prevertebral ganglia, synapse onto 
ENS neurons and generally serve to inhibit GI secretomotor 
function [11,15].

Acetylcholine and norepinephrine are two key 
neurotransmitters that modulate parasympathetic and 
sympathetic pathways, respectively [8,16]. Acetylcholine 
serves as both the pre- and post-ganglionic neurotransmitter 
in the parasympathetic nervous system and is essential to 
vagal nerve activity. Currently, there is substantial evidence 
for chronic changes in central cholinergic function following 

TBI [17,18]. Cholinergic activity may likewise be disrupted 
in the peripheral nervous system following TBI, contributing 
to ENS dysfunction [8]. Increased intestinal permeability and 
decreased GI motility are two common secondary GI findings 
in TBI patients and have often been linked to perturbations 
in vagal activity [3,11]. For example, in experimental studies, 
prophylactic vagal nerve stimulation has potential to preserve 
gut integrity and increase expression of tight junction 
proteins [3,19]. Moreover, parasympathetic input onto the 
ENS via the vagus nerve is known to promote GI motility 
and, thus, a decrease in cholinergic activity following TBI 
may explain slowed GI motility seen in these patients [20]. 
Finally, cholinergic activity within the ENS appears to play 
an important role in regulating anti-inflammatory responses 
within the gut, potentially via interactions with α7 receptors 
on macrophages [21,22]. In effect, a disrupted cholinergic 
system may not only alter intestinal structure and function, 
but may also serve to promote intestinal inflammation, 
further disrupting the intra-intestinal homeostasis. 

An increase in sympathetic activity is similarly 
observed following TBI and is associated with a rise in 
systemic catecholamine levels, such as norepinephrine and 
epinephrine [12,23]. Norepinephrine is the postganglionic 
neurotransmitter of the sympathetic nervous system and is 
one of the catecholamines largely responsible for end-organ 
sympathetic input to the ENS [24]. Although not yet directly 
studied in the setting of TBI, norepinephrine has been shown 
to slow gut motility and delay gastric emptying in animal 
studies and may likewise contribute to GI dysmotility seen 
in TBI patients [11,16,25]. In addition, catecholamines may 
also indirectly impact the gut-brain axis through a decrease 
in splanchnic blood flow [16,20]. In particular, the gut relies 
heavily on blood flow to regulate GI secretions and nutrient 
absorptions and, thus, such alterations can significantly 
perturb intra-intestinal homeostasis [20,26].

Altogether, disruptions in the ANS may lead to 
important changes in intestinal structure and function, 
such as disrupted intestinal barrier integrity, dysmotility 
and decreased blood flow. Such changes may disrupt the 
delicate homeostasis within the gut which maintains the 
microbiotic environment [11]. As a result, gut microbiota 
may intrinsically adapt, leading to dysbiosis. In a positive 
feedback loop, a dysregulated microbiotic environment may 
utilize the gut-brain-axis to then feedback onto the brain, 
enhancing neuroinflammation and secondary brain injury 
(Figure 1) [3,27].

https://medwinpublishers.com/NNOAJ
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Figure 1: Flowchart demonstrating a dysregulated microbiome and secondary brain injury arising from autonomic dysfunction, 
characterized by an imbalance in the sympathetic and parasympathetic nervous system.

Innovation

Several innovative treatment approaches for optimization 
of the GI interface with the CNS post-TBI are either currently 
being studied or have been hypothesized as beneficial 
based on previously demonstrated research. As previously 

outlined, gut dysbiosis is triggered by neurotrauma. There are 
numerous subsequent consequences of dysbiosis, including 
compromised mucosal barrier function, intraluminal 
translocation of bacteria, and dysfunctional immune 
responses in the gut, which may play a multifactorial role in 
several disease processes [28] (Figure 2).

Figure 2: Diagram of the potential contribution of gut dysbiosis to several disease processes.

The dysbiosis of the small intestine altering the immune 
homeostasis causes an increase in regulatory T (Treg) cells 
and a decrease in interleukin 17 due to decreasing the 
response of γδ T cells through changes in the activity of 
dendritic cells [29]. The presence of gut microbiota has been 
demonstrated in studies of germ-free mice to help maintain 
gut motility, protect the integrity of the intestinal mucosa, 

and facilitate the differentiation of Treg cells [30]. It follows, 
then, that the restoration of gut microbiota to a baseline 
microbial profile following TBI may improve outcomes. 
Thus, fecal microbiota transplantation (FMT) (Figure 3) has 
been proposed as a method to restore the microbiota in this 
manner [31].

https://medwinpublishers.com/NNOAJ
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Figure 3: Stepwise diagram of FMT.

The use of FMT in treating Clostridium difficile infection 
has already been well described. It has also shown promise in 
treating other noninfectious diseases, such as inflammatory 
bowel disease [32]. It has been demonstrated that FMT 
may contribute to the reduction in the size of brain lesions 
and may also improve health outcomes following ischemic 
stroke, potentially by way of neuroprotection offered by 
FoxP3+ Treg cells in the gut after stroke in mice [33]. Another 
mechanism of neuroprotection in this manner has been 
proposed to be mediated by increased microglial activity 
[34]. Although in the primitive stages of research, FMT post-
TBI is a leading innovative approach related to this topic as 
it currently stands, due to the demonstrated observation of 
neuroprotection.

Another innovation that could theoretically contribute 
to reduction in gut dysbiosis post-TBI is the administration 
of probiotics. There is evidence that probiotics causes 
an increase in interleukin-10 levels, thereby decreasing 
pro-inflammatory cytokines in the intestinal epithelium 
[35]. Specifically, probiotic formulations often consist of 
Lactobacillus and Bifidobacterium species of bacteria. 
These species are more likely to enhance Treg activity in 
the CNS and peripheral nervous system [28]. Bacterial 
metabolites produced by probiotic bacteria could also 
influence mitochondrial function [36]. This may be a direct 
or indirect result of increased generation of SCFA products 
by gut microorganisms [37]. In addition to dietary ketones, 
products of the gut microbiome provide the injured brain 

with alternative energy sources and may contribute to 
improved bioenergetic performance following TBI [38]. More 
specifically, butyric acid produced by Clostridium butyricum 
has been shown to improve neurological impairments, 
decrease brain edema, reduce neurodegeneration, and 
improve blood-brain barrier (BBB) function [39]. In addition, 
treatment with probiotic supplements has also been shown 
to lower plasma levels of TNF-α, reduce cerebral monocyte 
infiltration, and decrease microglial activation [40,41]. Thus, 
it appears logical that administration of probiotics may 
afford a multifactorial benefit in terms of reduction of gut 
dysbiosis post-TBI that is an important consideration for 
future research in this setting.

In addition, innovative treatment options targeting 
dysautonomia, which leads to dysbiosis and secondary brain 
damage after TBI, may also be effective treatment options 
that merit consideration. For example, vagal stimulation 
in the post-TBI setting may reduce intestinal permeability, 
by way of increased hormone production in the gut 
(Figure 4). As another possible avenue of therapy, targeted 
immunomodulatory strategies may also be explored. There 
is evidence that γδT cells may contribute to worsening 
neurologic recovery. In murine studies, monoclonal antibody 
therapy was used to inactivate γδT cells, which led to 
improved functional neurologic recovery [42]. Thus, it may be 
possible to develop individualized therapies by suppressing 
this damage-inducing cell line, although this assertion has 
not been substantiated by current research.

https://medwinpublishers.com/NNOAJ
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Figure 4: Visual diagram of vagal stimulation increasing the production of gut hormones.

Preclinical Studies

Preclinical models of neurotrauma are fundamental 
to the understanding of the disease process given the 
challenges of studying neurotrauma in a clinical setting. The 
lack of accurate and dependable methods of diagnosis, both 
emergently and retrospectively, makes it difficult to select 
diseased participants and healthy controls reliably [43,44]. It 
is also challenging to maintain a longitudinal clinical study in 
which cognitive and neurological symptoms can be analyzed 
while controlling all potentially confounding variables, such 
as the use of narcotics or psychiatric diagnoses [45,46]. 
Thus, researchers have relied on preclinical models to 
study the onset, progression, and potential therapies 
for neurotrauma in a controlled environment [47]. The 
relationship between neurotrauma, the gut microbiome, and 
the gut-brain axis has been investigated across numerous 
preclinical models [48,49]. In particular, researchers are 
exploring the bidirectional communication of the gut-brain 
axis to understand both enteric and neurological disease 
pathophysiology, and to elucidate potential treatments for 
disease processes such as Neurotrauma [3,50]. 

Preclinical evaluation of neurotrauma and the gut-
brain axis usually includes integrating an animal model 
of neurotrauma, such as the fluid percussion model or a 
blast-induced trauma model, and some modification or 
manipulation of the gut Microbiome [47,51]. The modulatory 
effects that the gut microbiome has on the brain have been 
primarily studied using animals with no microbial species 

(germ-free), animals with fecal microbiota transplantation, 
and animals depleted of microbes using antibiotics [3,51-
54]. These studies have provided evidence of the “bottom-
up” mechanistic effects that the gut microbiota has on the 
regulation of various processes within the CNS, including 
modulation of pain and response to stress [3,55-56].

While there is still much work to be done in preclinical 
studies to understand the specific mechanisms involved, 
recent studies have started to reveal the influence that gut 
microbiota has on the gut-brain axis after a neurotraumatic 
event. Simon et al. used a cortical impact model of TBI on 
mice with and without administration of an enteric antibiotic 
cocktail [48]. The researchers concluded that the depletion 
of the gut microbiota with antibiotics has a neuroprotective 
effect post-TBI. Mice that were given the antibiotic cocktail 
before the controlled TBI showed increased CA1 hippocampal 
neuronal density, reduced Iba-1 positive cells, and reduced 
associative learning deficit, in comparison to the mice 
that were not given the antibiotic cocktail [48]. However, 
researchers at the St. Louis school of medicine completed a 
similar study showing that modulation of the gut microbiota 
with antibiotics before TBI results in increased neuronal 
loss and worsened outcomes [57]. These contrasting results 
could be due to the use of different antibiotics in the studies, 
resulting in different changes to the microbiota populations 
of each group [48,57]. Although the results of these studies 
differ, they both show preclinical evidence of changes in the 
microbiota inducing changes in TBI sequelae. There have also 
been preclinical investigations that have revealed changes 
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in the gut and fecal microbiota as a result of traumatic 
neural injury [58,59]. This recent information supports the 
observations of Houlden et al., who used an experimental 
weight drop model to study post-TBI dysbiosis in mice [60]. 
They found changes in the gut microbiota populations of 
Porphyromonadaceae, Bacteroidetes, Proteobacteria, and 
Firmicutes in response to changes in brain function resulting 
from TBI. 

The bidirectional communication of the gut-brain axis is 
being researched as a potential target for the treatment of 
neuronal injury. For example, preclinical data indicate that 
probiotic supplementation is neuroprotective following 
traumatic neural injury and cerebral ischemia/reperfusion 
injury [61,62]. Zhang and Jiang report that probiotics act 
to strengthen the intestinal barrier, inhibiting the systemic 
dysregulation of the immune system that occurs after 
Neurotrauma [61]. Other researchers have found that 
modulating the gut microbiota of mice with probiotics 
reduces systemic inflammation and suppresses microglial 
hyperactivation after induction of a gut inflammatory 
response [63]. Similarly, Docosahexaenoic acid (DHA) 
supplementation has been found to have strong anti-
inflammatory and neuroprotective effects, reducing axonal 
damage in an experimental murine model of TBI [64]. These 
preclinical studies all align with the hypothesis of treating 
the gut to heal the brain. Regarding neurotrauma, it is 
believed that neurodegenerative pathology starts in the gut 
before being observed in the CNS via the vagus nerve [3]. In 
preclinical models, vagus nerve stimulation (VNS) was also 
found to have neuroprotective effects when administered 
both prophylactically and as a treatment following TBI [65]. 
Although the exact mechanisms have not been explicated, 
VNS reduced the breakdown of the blood-brain barrier, 

attenuated cerebral inflammation and edema, and improved 
cognitive and motor recovery in comparison to control 
animals [65].

There has been much preclinical success with 
microbiome and neurotrauma research, but most of these 
findings have not resulted in changes to clinical management 
of Neurotrauma [3]. From a translational perspective, there 
is a challenge in the fact that overcoming the differences in 
the gut microflora of experimental animals and humans [66]. 
It is hopeful that as more work is done to understand the 
mechanisms underlying many of these preclinical findings, 
issues with differences in gut microflora will diminish. 

Proteinopathy

As previously described, several different insults to 
the GI system can lead to aberrations in the gut-brain axis 
resulting in a cyclic process of chronic neuroinflammation 
[67-69]. This chronic process can subsequently result in 
neurodegeneration, often secondary to proteinopathy, as 
evidenced in many neurodegenerative diseases such as 
Alzheimer’s disease (AD), Parkinson’s disease (PD), and 
Amyotrophic lateral sclerosis (ALS) [70,71]. Proteinopathy, 
described as the misfolding and aggregation of various 
proteins and enzymes within the CNS and peripheral nervous 
system, leads to cycles of inflammation and maladaptive 
immune responses that eventually lead to neuronal cell 
dysfunction and death [72]. There currently exists evidence 
in literature that highlights the role of gut dysbiosis in a 
defective BBB, changes in inflammatory mediators and 
immune cells, increased oxidative stress, and defective 
autophagy, the culmination of which can result in neurotoxic 
proteinopathy (Figure 5).

Figure 5: Summary of major mechanisms underlying development of proteinopathy from gut dysbiosis and other GI insults.

https://medwinpublishers.com/NNOAJ
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Several studies have shown the association of gut dysbiosis 
with a defective BBB and diminished mucosal defenses [73]. 
This encourages the translocation of gut organisms and their 
associated neurotoxic metabolites to alter immune signaling 
pathways in the CNS. Immune signaling is altered by these 
metabolites as they act as pathogen-associated molecular 
patterns (PAMPs) and damage-associated molecular 
patterns (DAMPs), activating pattern recognition receptors 
of the innate immune system [74]. These immune signaling 
changes are mediated by functional changes to dendritic 
cells, glial cells, B and T cells, among other cells in the PNS 
[75]. The resulting inflammatory response changes lead 
to chronic activation of proinflammatory cytokines and 
can be exacerbated by cortisol secretion secondary to CNS 
stress from a defective BBB [76]. In addition, gut dysbiosis 
influences changes in the composition of gut microbe 
metabolites such as SCFAs, which alter gene expression in 
the CNS and regulate oxidative stress at the BBB [77,78]. 
A study conducted by Brenner et al. demonstrated that an 
abundance of cyanobacteria in the gut microenvironment is 
associated with depletion of glutathione, a potent cellular 
antioxidant [79]. Further, Mecocci, et al. previously found 
increased oxidative damage to mitochondrial DNA in AD 
brain tissue samples [80]. Wang, et al. also showed that 
excessive production of reactive oxygen species (ROS) led 
to endoplasmic reticulum (ER) stress and resulting damage 
to cellular macromolecules. This resulted in accumulation of 
misfolded proteins via aberrations in ER homeostasis [81]. 

The increase in misfolded proteins and damaged 
macromolecules overwhelms an already dysfunctional 
autophagy system. Autophagy represents a cellular self-
degradative process that maintains a balance of stored 
cellular debris and other macromolecules. In states of 
chronic inflammation and oxidative stress, proinflammatory 
molecules stimulate microglia and astrocytes, further 
disrupting the immune response and impairing autophagy 
[82]. Impaired autophagy has been linked to the development 
of neurodegenerative diseases such as AD [83]. In fact, 
Yang, et al. showed that in a mouse model for AD, deletion 
of cystatin B, an inhibitor of lysosomal cysteine proteases, 
led to a reversal in autophagy pathology [84]. This reversal 
was associated with decreased accumulation of amyloid-
beta peptides among other substrates and rescue of memory 
impairment. 

Management Considerations for Clinicians

Our findings show that there is substantial evidence 
in the literature implicating the gut microbiota and the 
gut brain axis in physiologic and behavioral changes. It is 
therefore imperative that psychologists, physiologists, and 
other clinicians who are caring for patients recovering from 
significant neurotrauma and/or other bodily insults keep in 

mind the importance of the microorganismal composition of 
the gut and its effect on the gut-brain-axis. For instance, pain is 
often an important factor in patient recovery and is common 
following trauma. Luczynski, et al. demonstrated in an in 
vivo model that germ free mice displayed higher response 
to visceral pain [85]. In addition, increased expression of 
toll-like receptors and pro-inflammatory cytokines were 
observed from the spinal cord of germ-free mice. This is of 
particular importance as changes in the gut microbiome can 
influence pain perception, leading to delayed or improved 
recovery. Furthermore, aberrations in gut-brain axis has 
negative implications for the ability to sustain emotional 
stress, temperament, dietary behavior, and social and 
reproductive behavior [86]. These can influence a patient’s 
motivation to pursue physical therapy, following up with 
clinical appointments, and maintaining a positive outlook on 
their potential for recovery. Clinicians should keep in mind 
that all these factors influence the rate and overall quality of 
recovery from a physical and mental capacity. We argue that 
a greater emphasis should be placed on patient education of 
proper dietary and lifestyle habits to improve gut microbiota 
in hopes of alleviating suffering from neurological or mental 
disorders. Moreover, we recommend clinicians maintain 
a low threshold for referral to psychological or psychiatric 
services to aid in management of this patient population for 
more holistic care. 

Conclusion

Recent research has elucidated several mechanisms by 
which neurotrauma may induce alterations in the gut-brain 
axis, including the incitement of autonomic dysfunction. 
Dysfunction in the gut-brain axis can, in turn, lead to the 
development of secondary neurologic injury through 
enhanced neuroinflammation and the development of 
proteinopathy. Much of this data has come from preclinical 
studies; known differences in gut microflora between 
animals and humans necessitates further exploration into 
the mechanisms of gut-brain axis dysregulation in human 
neurotrauma patients. Nonetheless, innovations such as FMT 
are beginning to show promise in reducing gut dysbiosis 
seen in neurotrauma patients, thereby reducing the potential 
for secondary neurologic injury.
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