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Abstract 

Marine macroalgae are suitable surfaces for bacterial colonization; in fact, this microbiota is important to the cycling of 

organic material from algal origin. We describe the cultivable microbiota associated with four endemic Antarctic 

macroalgae: Palmariadecipiens, Himantothallus grandifolius, Desmarestia antarctica, and Ascoseira mirabilis. Among the 

bacterial colonies obtained on marine agar 71.4% were affiliated to Proteobacteria, 20% to Firmicutes, and 8.6% to 

Bacteroidetes. Pseudoalteromonas was the only genus present in all samples; otherwise, each macroalga presented a 

unique microbiota, which was distinct from macroalgae from northern oceans. These results indicated a species-specific 

interaction between Antarctic macroalgae and its surface microbiota. 
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    Introduction  

 The microbial community associated to macroalgae 
(seaweed) is diverse and complex, differing among algal 
phyla and species, season, and host age [1]. Interactions 
between marine macroalgae and microorganisms are very 
diverse as well; macroalgae provides home and nutrients, 
a resultant from algal photosynthesis, to associated 
microorganisms [2]. On the other hand, it was 

demonstrated that bacteria influence algal growth by 
producing vitamins [3] or even increasing bio-availability 
of Fe [4]. Another example is the highly specific 
association between Vibrio angularum and the green 
macroalga Ulva in which algal zoospores will only 
establish on a surface in the presence of certain chemical 
signals from their bacterial partner [5]. Some authors also 
reported the essential role of specific bacterial 
communities for the normal development of the algal host 
[6,7]. Such intimate association suggests that macroalgae 
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and bacteria interact as a unified functional entity or 
holobiont [8]. 
 
     There are few studies on the ecological aspects of the 
interactions between macroalgae and its microbiota. The 
majority of the studies describe the bacteria associated 
with edible macroalgae, especially Pyropia, Laminaria and 
Undaria that are consumed in Japan, Korea and China as 
well as Palmariapalmata which is consumed in Ireland. 
Such studies were directed to identify one algal or human 
pathogen on themacroalgae [9,10]. The prevalence of the 
family Flavobacteriaceae was reported previously in 
studies on the macroalgae from the Gulf of Peter the Great 
(Sea of Japan) [11-13]. 
 
     The importance of the macroalgae and their associated 
microbiota to the carbon cycle in Antarctic oceans may be 
underestimated.Scientific studies revealed the presence of 
many species of microorganisms in Polar environments 
unveiling the important role of Antarctic bacteria in 
consuming, producing, and sequestering different kinds of 
compounds. Although macroalgae are abundant in the 
Antarctic Peninsula, little is known about the diversity of 
the microbiota associated with macroalgae from cold 
environments, especially from species endemic to polar 
environments. 
 
     An undergoing research developed in the surroundings 
of the Brazilian Antarctic Scientific Station – Comandante 
Ferraz (EACF) showed that the Rhodophyte 
Palmariadecipiens is the most common macroalga in the 
Antarctic Peninsula [14]. The estimated biomass 
produced by deposition of macroalgae casted ashore on 
the beach of EACF is about 60 kg by lineal meter of shore, 
with P. decipiens comprising up to 95% of this 
biomass.The objective of the present work was to survey 
the bacterial species that inhabit the surface of 
macroalgae by isolating and characterizing heterotrophic 
bacteria associated with four common species of marine 
Antarctic macroalgae. 
 

Material and Methods 

     Living individuals of four species of macroalgae were 
collected in Admiralty Bay, King George Island, in 
February of 2007. Samples of Ascoseira mirabilis and 
Himantothallus grandifolius were collected in Demay 
Point; Desmarestia antarctica in Agat Point; and 
Palmariadecipiens from areas close to the Brazilian 
station [14].  
 
     Each alga was washed three times in sterile distilled 
water to remove bacteria that were loosely associated; 10 

g of each alga were grinded in sterile seawater. A 100-fold 
dilution of this mixture was inoculated on Marine Agar 
2216 (DIFCO) and the plates were incubated at 10ºC for 7 
to 11 days. Bacterial colonies were selected based on 
morphological characteristics. Cell morphology was 
checked for purity and uniformity using bright field 
microscopy after a Gram staining.  
 
     DNA of each colony was extracted from 5 mL of liquid 
culture [15]. The gene for the 16S rRNA was amplified by 
PCR reaction using the Universal primers 27F and 1401R 
[16,17]. The nearly-full sequences of the 16S rRNA gene 
were obainted using the same primers described above. 
The nucleotide sequences were analyzed using the 
software Bio Edit [18] and Bacterial affiliation was 
determined using the Ribosomal Database Project II [19]. 
Corresponding sequences were deposited in the GenBank 
under the numbers JQ618815-JQ618847. 
 
     Multivariate analyses were applied to summarize the 
data. A matrix containing the microbiota associated with 
macroalga species was generated and used for the 
Detrended Correlation Analysis (DCA), revealing the 
linear distribution of data (gradient size < 4.0), which was 
further analyzed by Principal Component Analysis (PCA) 
[20]. The multivariate analyses were carried out using 
Canoco 4.5 [21]. 
 

Results and Discussion 

     Thirty three cultivable bacteria associated with 
Antarctic macroalgae were isolated. Seven isolates 
(21.2%) were Gram-positive cocci and 26 (78.8%) Gram-
negative bacilli. The analysis of the 16S rRNA gene 
revealed that they belonged to three Bacterial phyla: 
Firmicutes, Bacteroidetes and Proteobacteria (Table 1) 
 
     Proteobacteria was the most abundant and diverse 
Bacterial phylum (71.4%) found among the isolates; they 
were either affiliated with the Gamma Proteobacteria 
(Pseudoalteromonas, Halomonas, Cobetia, Marinomonas, 
Colwellia, Pseudomonas, and Psychrobacter) or to the 
Alpha Proteobacteria (Sulfitobacter). Phylum Firmicutes 
was the second most represented (20%); the sequences 
were affiliated with the genera Aerococcus or Planococcus, 
representing the Gram positive bacteria initially 
observed. Only three bacteria were affiliated with the 
Phylum Bacteroidetes (8.6%), these bacteria were related 
to the genera Maribacter, Polaribacter, and 
Winograskyella (Table 1). Previous studies revealed that 
these phyla are common in polar marine environments 
such as: sea ice [22], seawater [23], and macroalga from 
the Gulf of Peter the Great [11,13]. 
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     Although some of the genera were already observed in 
association with marine macroalgae from northern 
oceans, the composition of their microbiota is distinct 
from the Antarctic macroalgae [11,24]. In addition, the 
genera Aerococcus, Polaribacter, Winogradskyella, and 
Colwellia were for the first time observed on such 
surfaces. It is possible that the differences observed on 
cultivable microbiota from Antarctic and non-Antarctic 
macroalgae may be due to differences in culture media or 
cultivation techniques, since the choice of culture medium 
favors the growth of specific genera. 
 
     The genus Pseudoalteromonas was observed in all four 
Antarctic macroalgae; over 61.5% of the isolates 
associated with A. mirabilis belonged to this bacterial 
genus. Except for the genus Pseudoalteromonas, each 
macroalgae species studied presented a distinct bacterial 
composition, which was further validated statistically by 
PCA; that showed differences in the microbiota of the four 
macroalgae species analyzed (Figure 1). This result 
suggests a species-specific association between macroalga 
and microbiota. This observation is in agreement with 
previous studies comparing the cultivable microbiota, 
which indicated a species-specific microbial community 
on non-Antarctic algal species from the Sea of Japan [11] 
and Tuandao Bay, China [24].  
 
     Although molecular analysis applied on the 
metagenome may provide a better representation of the 
microbial richness from an environmental sample, it is 
not free from technical biases [25]. One advantage of  
classic culture techniques is the possibility of further 
studies on interactions between organisms and the 
screening of novel bacterial products for biotechnological  

applications [1]. Therefore, the present study provided 
not only information about the cultivable heterotrophic 
bacteria on Antarctic algal surfaces, but also allows for 
further investigation on the nature of this interaction.  
 

 

 

Figure 1: PCA showing bacteria associated with each 
species of macroalga. The first two ordination axes 
explained 94.3 % of the total variance. Macroalgae species 
are presented in bold italic and their correspondent 
microbiota in italic. 
 

Colony Identification Division Affiliation 
Nearest phylogenetic relative in 

Genebank 
Identity 

EACF-12a[Am] Bacteroidetes Maribacterarcticus(AY771762) 0.94 

EACF-1[Pd] Bacteroidetes Polaribacter sp. SW007 (F493674) 0.94 

EACF-26a[Da] Bacteroidetes 
Winogradskyellathalassocola; S4-7 

(Y771731) 
0.92 

EACF-2[Pd]; EACF-4[Pd]; EACF-6[Pd]; EACF-7[Pd]; 
EACF-27a[Pd] 

Firmicutes Aerococcusviridans; 15MS (U075039) 0.98 

EACF-13a[Am];EACF-14a[Am] Firmicutes Planococcus sp. Nj-73 (M491471) 0.96 

EACF-21b[Hg] 
Proteobacteria 

(Alpha) 
Sulfitobacter sp. ARCTIC-P49 (Y573043) 0.97 

EACF-27b[Pd] 
Proteobacteria 

(Gamma) 
Cobetia sp. 191Z-6 (JX310224) 0.98 
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EACF-25b[Da] 
Proteobacteria 

(Gamma) 
Halomonas sp. NT N45 (B166987) 0.99 

EACF-3[Pd] 
Proteobacteria 

(Gamma) 
Colwellia sp. IE7-5 (Y829231) 0.96 

EACF-19[Hg] 
Proteobacteria 

(Gamma) 
Marinomonas sp. BJK17 (J717295) 0.96 

EACF-20[Hg] 
Proteobacteria 

(Gamma) 
Pseudomonas sp. ARCTIC-P33 (Y573033) 0.97 

EACF-17a[Am], EACF-23[Da], EACF-25a[Da] 
Proteobacteria 

(Gamma) 
Psychrobacter sp. St1 (F260715) 0.97 

EACF-18[Am] 
Proteobacteria 

(Gamma) 
Psychrobacterglacincola; NT9276b 

(Y167310) 
0.98 

EACF-15a[Am]; EACF-22a[Da]; EACF-28[Pd] 
Proteobacteria 

(Gamma) 
Pseudoaltero monashaloplanktis TAC125 

(CR954246) 
0.97 

EACF-11[Am] 
Proteobacteria 

(Gamma) 
Pseudoalteromonas sp. BSw20001 

(U365590) 
0.98 

EACF-12b[Am] 
Proteobacteria 

(Gamma) 
Pseudoalteromonas sp. SUR560 (B038036) 0.99 

EACF-13b[Am]; EACF-15b[Am]; EACF-16[Am]; 
EACF-26b[Da] 

Proteobacteria 
(Gamma) 

Pseudoalteromonas sp. WINTA324h 
(B274777) 

0.99 

EACF-17b[Am]; EACF-21a[Hg]; EACF-24b[Da] 
Proteobacteria 

(Gamma) 
Pseudoalteromonas sp.; IC006 (U85856) 0.98 

EACF-14b[Am] 
Proteobacteria 

(Gamma) 
Pseudoalteromonas sp. WINTA44d 

(B274773) 
0.99 

Table 1: Affiliation of the isolated bacteria associated with macroalga according to the 16S rRNA gene phylogeny. 
Letters inside brackets indicate the macroalga from which this bacterium was obtained: Am: Ascoseira mirabilis, Hg: 
Himantothallusgr andifolius, Da: Desmarestia antarctica, and Pd: Palmariadecipiens 
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