

Antiviral Effects of Propolis against SARS-COV 2

Harfouch RM*

Department of microbiology and biochemistry, Al Sham private university, Syria

***Corresponding author:** Rim M Harfouch, Department of microbiology and biochemistry, Faculty of pharmacy, Al Sham private university, Latakia, Syria; Email: r.h.foph.lat@aspu.edu. sy

Mini Review

Volume 7 Issue 1

Received Date: December 23, 2021 **Published Date:** January 11, 2022 DOI: 10.23880/oajmb-16000210

Abstract

Propolis, which is produced by honey bees from plant exudates, has long been used in traditional herbal medicine and is widely consumed as an immune system enhancer. The COVID-19 pandemic has renewed interest in propolis products worldwide; fortunately, various aspects of the SARS-CoV-2 infection mechanism are potential targets for propolis components. In preclinical studies, propolis promoted immunoregulation of pro-inflammatory cytokines, including reduction in IL-6, IL-1 beta and TNF- α Propolis has also shown promise as an aid in the treatment of several of the comorbidities that are particularly dangerous in COVID-19 patients, including respiratory diseases, hypertension, diabetes, and cancer. In this mini review, we summarize the potential role of COVID-19 treatment and prevention.

Keywords: COVID-19; Propolis; Antiviral Activity

Abbreviations: ACE2: Angiotensin-Converting Enzyme 2; LOS: Length of Hospital Stay

Introduction

Natural products, which have historically been widely used to help treat diseases are among the options being considered as an adjuvant treatment for SARS-CoV-2 infection, because they are generally inexpensive, widely available, and rarely have undesirable side effects. Some have proven antiviral activity. An important advantage of using natural remedies is that people who have other health problems or who have mild flu-related symptoms could take simple and inexpensive measures to help reduce the impact of infection with SARS-CoV-2 [1]. Propolis is a mixture of beeswax and resins collected by the honeybee from different plant buds, leaves and exudates. Bees use propolis not only as a building material but also as a means of maintaining low levels of bacterial and fungal concentration in the hive. More than 150 components such as polyphenols, phenolic aldehydes, quinones, coumarins, amino acids, steroids and

inorganic components have been identified in propolis samples [2].

Infection by SARS-CoV-2, the virus that causes COVID-19, is characterized by binding between viral spike proteins and angiotensin-converting enzyme 2 (ACE2) [3]. SARS-CoV-2 infection is associated with increased levels of chemokines and activated pro-inflammatory cytokines that lead to the development of atypical pneumonia, with rapid respiratory impairment and pulmonary failure. Immunological/ inflammatory phenomena have been shown to be important in the spectrum of SARS-CoV-2 infection. These mechanisms are associated with organ dysfunction more than the viral load [4].

Anti-COVID-19 Effects of Propolis

In silico studies have investigated the use of flavonoids as effective therapeutic candidates against COVID-19 by targeting S protein cleavage by host-cell proteases, S protein binding to cell surface receptors such as ACE-II, inhibiting S protein, and S protein binding to the inflammatory B56 unit in PP2A as well as by interfering with NSPs of SARS-CoV-2 in order to hamper viral replication [5,6]. A Brazilian Randomized control trial reported that treating hospitalized COVID-19 patients with a single oral daily dose of non-alcoholic preparation non-alcoholic preparation was associated with significant reductions in the length of hospital stay (LOS) and renal injury. Propolis treatment was not associated with a decrease in the need for oxygen therapy [7].

Identification of the most potent compounds is necessary for effective drug development; however, it is necessary to note that the pharmacological effects of supercritical extracts of propolis are superior to its single components (e.g., artepillin C and its precursor coumaric acid) indicating synergetic interaction of different compounds in propolis [8].

Conclusion

The current emergency caused by the COVID-19 pandemic and limited therapeutic options, propolis is presented as a promising and relevant therapeutic option that is safe, easy to administrate orally and is readily available as a natural supplement and functional food.

References

- Berretta AA, Silveira MAD, Capcha JMC, Jong DD (2020) Propolis and its potential against SARS-CoV-2 infection mechanisms and COVID-19 disease: Running title: Propolis against SARS-CoV-2 infection and COVID-19. Biomed Pharmacother 131: 110622.
- 2. Harfouch RM, Mohammad R, Suliman H (2017)

Antibacterial activity of Syrian propolis extract against several strains of bacteria in vitro. World J Pharm Pharmaceuti Sci 6: 42-46.

- 3. Harfouch RM, Moualla YM, Shahoud SM, Belal LA, Mohammad BS, et al. (2020) Epidemiology of COVID-19 in the Most Pandemic Countries. Ann Clin Cases 1(4): 1021.
- 4. Harfouch RM (2021) Cytokine Storm Syndrome in COVID-19 Patients: Characteristics and Diagnosis. Ann Clin Med Case Rep 7(18): 1-3.
- Silva FMAD, Silva KPAD, Oliveira LPMD, Costa EV, Koolen HH, et al. (2020) Flavonoid glycosides and their putative human metabolites as potential inhibitors of the SARS-CoV-2 main protease (Mpro) and RNA-dependent RNA polymerase (RdRp). Mem Inst Oswaldo Cruz 115: e200207.
- Refaat H, Mady FM, Sarhan HA, Rateb HS, Alaaeldin E (2021) Optimization and evaluation of propolis liposomes as a promising therapeutic approach for COVID-19. Int J Pharm 592: 120028.
- Silveira MAD, Jong DD, Galvão EBDS, Ribeiro JC, Silva TC, et al. (2021) Efficacy of Brazilian green propolis (EPP-AF®) as an adjunct treatment for hospitalized COVID-19 patients: A randomized, controlled clinical trial. Biomed Pharmacother 138: 111526.
- Ali AM, Kunugi H (2021) Propolis, Bee Honey, and Their Components Protect against Coronavirus Disease 2019 (COVID-19): A Review of In Silico, In Vitro, and Clinical Studies. Molecules 26(5): 1232.

