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Abstract

Plant-parasitic nematodes are responsible for huge annual economic loss that is estimated to be more than 215 billion US$ 
worldwide due to plants damages caused by nematodes. The root-knot nematode (Meloidogyne spp.) is ranked first in the 
global list of top ten plant-parasitic nematodes, with wide host range of more than 3000 host plant species and posing a 
major threat in the cultivation of agricultural, vegetables, and horticultural crops. Such pathogens are commonly controlled 
using chemical nematicides. However, the risk of using such chemicals on human, animals, and surrounding environment has 
forced researchers to search for natural, less harmful, and effective nematicidal agents. In this review, we discuss the biological 
control of nematodes by different microorganisms, stressing on the promising capabilities of some mushrooms such as some 
species of Pleurotus, Beauveria, Ganoderma lucidum, and Lentinus edodes.
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Introduction

Sustainable agriculture has become one of the 
fundamental needs to ensure food security for Humans 
worldwide. Yet, as a result of population increase, the 
balance between human and their food supply is not safe. 
One traditional solution was to increase food via pest control 
[1,2]. Plant-parasitic nematodes have been present for 
nearly a billion years [3]. More than 4100 species belonging 
to different genera of plant-parasitic nematodes have 
been identified [4]. Such nematodes cause serious annual 
economic loss worldwide that exceed 215 billion US dollars 
[5]. Root-knot nematodes (Meloidogyne spp.) are soil-borne, 
sedentary endoparasite and came in the first position in the 
top ten list of plant-parasitic nematodes across the world. 
This genus has widespread, a host range of more than 
3000 host plant species and posing a major threat in the 

cultivation of agricultural, vegetables, and horticultural crops 
[6-9]. The infection by Root-knot nematodes starts with the 
penetration of juveniles (J2) plant roots and modifies the 
vascular cylinder. The migration is aided by a combination of 
specialized glands secretion of cell-wall-degrading enzymes 
together with stylet protrusion (mechanical force) at the 
same time [10]. The J2s do not kill parasitized cells but it 
induces giant cells generation [11]. 

There are more than 100 species of Meloidogyne spp. 
dispersed around the world and they parasitize different 
plants genera [12]. Meloidogyne incognita, Meloidogyne 
javanica, Meloidogyne arenaria, and Meloidogyne hapla 
are the most important species that cause about 95% of 
economic losses in cultivated lands [13]. Controlling root-
knot nematodes can be performed by applying various 
strategies such as regulatory, cultural, physical, chemical, 
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and biological strategies. However, some limitations and 
risks appear associated with these strategies [14,15]. The 
cause of the problematic hardness in controlling nematodes 
is due to the difficulty in distinguishing the plant infections 
caused by nematodes with those caused by other pathogens 
or abiotic factors.They have a wide host range, short 
periods of high reproductive rate and generation [16]. 
Although nematicides are the commonest approach for the 
management of root-knot nematodes but due to the risk to 
humans and environments presented by using synthetic 
nematicides hazardous are incited scientists for working on 
the alternatives to nematicides less harmful control [17].

Biological Control of Nematodes 

Biological control is recently developed approach to 
controlling nematodes using microorganisms such as fungi 
and bacteria and their natural product [18-21]. Several 
biocontrol agents have shown to be able to produce secondary 
metabolites as antibiotics, toxins, and lytic enzymes. 
Hydrolytic enzymes such as collagenases, chitinases, 
proteases and lipase have been related to the nematicides 
effect in microbial, and were verified as important factor in 

the degradation process of different chemical components 
of nematodes during different developmental stages [22]. 
The clear reason behind their use is that the nematodes 
biochemical composition during their mobile stages 
includes collagens and lipids, as well as chitin, and protein 
in the sedentary stages for tylenchoid nematodes such as 
Meloidogyne spp. 

Generally, the eggshell of the root-knot nematode consists of 
three main layers: 
(a) The outer vitelline layer that gives the structural 
uniformity of eggs [23]; 
(b) The middle chitinous layer of the eggshell which contains 
chitin fibrils embedded in a protein matrix [24] and 
(c) The internal lipid layer which preserve the impermeability 
of the shell [25]. 
Chitin was detected in found in gelatinous matrix of 
Meloidogyne javanica [26]. The role of microbial lytic enzymes 
and their effect on nematode hatching and morphological 
changes in juveniles, eggs, and eggshells under laboratory 
condition and efficiency on plant parasitic nematodes 
biocontrol Figure 1. 

Figure 1 Hatching is observed in the water control; 
normal juvenile and normal egg-containing J2 (A, arrows). 
Abnormal juveniles appeared (B and C), Spherical egg (E); 
eggshells appeared to be destroyed (F and G), abnormal 
hatching and eggs are decomposed (D, H) by microbial 
enzymes. A photo was taken by Dr. Gaziea at Plant Pathology 
Department, Nematology Unit, at National Research Centre. 
Consequently, fungal biological control is an interesting and 
rapidly developing research area and there is increasing 
attention in the nematodes biocontrol using fungi [27-29]. 
Fungi are known to possess a huge diversity of metabolic 
pathways and they have provided several large classes of 
commercial compounds, including many antibiotics used 

in medicine. Consequently, secondary metabolites in fungi 
could have much potential in their novel structures and 
nematicidal activities [30-32]. 

Role of Mushrooms as Eco-Friendly and 
Less Harmful Nematicides

Owing to the current focused on eco-friendly approaches 
for plant disease management caused by nematodes, the 
present study emphasis on mushroom fungi can serve as 
a promising source as alternative tools for biocontrol of 
plant-parasitic nematodes. Basidiomycetous macrofungi 
possess many biological activities as antimicrobial, antiviral, 
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mosquito larvicidal, and nematicidal agents [33]. As an 
example, omphalotin which is a new peptide secreted 
by the mushroom Omphalotus olearius. Omphalotin has 
nematicidal activity that is as potent as that obtained by the 
commercial nematicide ivermectin. Many researches have 
been made to find potent nematicidal substances that can 
replace traditional man-made chemical nematicides, few 
have been developed for wide use [34]. Till now, no fungal-
based nematicidal commercial product has been developed 
[35]. 

Macromycete Mushrooms as Anti-
nematodes Promising Tool 

Macromycete mushrooms are filamentous organisms, 
lacking chlorophyll, saprobes, which can be seen by the naked 
eye. They obtain their nutrients from the organic matter in 
their surrounding environment. They reproduce by the two 
ways asexually or sexually by spores. These fungi cell wall is 
composed of cellulose or chitin, and their growth is apical. 
Macromycetes mushrooms develop fruiting bodies, depend 
on organic matter in decay and can be parasitic, saprobic, or 
mutualistic. Such mushrooms can be categorized into edible 
mushrooms (such as Pleurotus ostreatus) and poisonous ones 
(such as Amanita abrupta) [36,37]. Mushrooms especially 
edible mushrooms have many importance concerning 
their nutritional composition. Edible mushrooms rich 
source of essential amino acids, vitamins, fibres and others. 
Mushrooms are a source for many pharmaceutical drugs. 
Edible mushrooms polysaccharides have antimicrobial and 
antioxidant activity [38,39]. Mushrooms belong to a toxin-
producing group of nematophagous fungi. These fungi 
secrete specific toxins that are capable of paralyzing and/or 
killing nematodes [40]. Moreover, enzymes are important key 
factors in the nematode infection and digestion processes by 
nematophagous mushrooms [41]. Degenkolb and Vilcinskas 
[42] reported that nematophagous basidiomycetes secrete 
different toxic nematicidal secondary metabolites.

Oyster mushroom compost is one of the potent compost 
that is famous for producing nematicidal toxic metabolites. 
Gray oyster (Pleurotus ostreatus) is one of the commercially 
produced oyster mushrooms that is known to produce trans-
2-decenedioic acid which is a toxin secreted by hyphae 
[43], this toxin paralyzes the nematodes on contact, which 
allows the hyphae to move into position to colonize and 
digest the nematode. Till now, only in vitro studies were 
performed to evaluate the effects of oyster mushroom 
on nematodes. Mushroom compost of Pleurotus sajor-
caju provides promising results in suppressing root-knot 
nematodes Meloidogyne incognita and has been given a lot 
of attention by researchers due to their environmentally safe 
and economically acceptable solution [44]. Xiang and Feng 
[45], reported the positive effects of Pleurotus ostreatus on 

the control of the peanut root-knot nematode Meloidogyne 
arenaria in the greenhouse, and the results of the experiments 
showed that Pleurotus ostreatus could markedly reduce the 
infecting number of nematode. Pleurotus ostreatus produces 
tiny droplets of toxin from minute spathulate secretory cells. 
When nematodes touching produced Pleurotus ostreatus 
droplets show a sudden and dramatic response. The head 
region shrinks significantly. In as little as 30 s, and usually 
within several minutes, the nematode becomes more or less 
immobilized but is not killed. Pleurotus strigosus, Pleurotus 
subareolatus, and Pleurotus cornucopiae behave in a similar 
way against nematodes [46]. 

Recently many researchers reported that most edible 
mushrooms species have nematocidal activity belong to the 
genus Pleurotus. The anthelmintic activity has been reported 
form extracts and its fractions obtained from Pleurotus 
fruiting bodies, mycelium, and degraded substrate. Among the 
nematicidal biologically active compounds originated from 
mushroom extracts pentadecanoic acid, octadecadienoic 
acid, octadecanoic acid, and the terpene β-sitosterol [47-50]. 
The capabilities of oyster mushrooms to infect and kill sugar 
beet cyst nematode Heterodera schachtii was investigated 
by Palizi, et al. [51], and the potency of Pleurotus ostreatus, 
P. sajor-caju, P. florida, P. flabellatus, P. ostreatus, P. eryngii 
and Hypsizygus ulmarius to prey on the cyst nematode was 
confirmed.

Zhao, et al. [52], mentioned that the culture filtrate of 
different isolates of Beauveria bassiana and its associated 
fungus had different levels of nematicidal activities, and the 
same culture filtrate had selective toxicity against different 
nematodes. This can be due to the ability of the different 
species belonging to the genus Beauveria to secrete different 
potent secondary metabolites as beauvericin, bassianin, 
bassianolide, beauverolides, bassiacridin, tenellin and 
oosporein [53,54]. Junxianke is a fermentation product 
produced by Beauveria bassiana, Junxianke is lethal to 
Ditylenchus destructor, Heterodera glycines and Meloidogyne 
incognita [55-57], thus Beauveria genus especially Beauveria 
bassiana have the potentially to applied in prevention of 
plant parasitic pests and nematodes. However, currently 
there are insufficient studies on the application of Beauveria 
in the control of nematode diseases.

Recently some experimental results revealed that the 
highest hatching inhibition and the juvenile deaths were 
observed after treatment with the Ganoderma lucidum 
ethyl acetate fraction followed by that of Lentinus edodes. 
The maximum inhibition of egg hatching (92.6%) and 
juvenile mortality (93.2%) of Meloidogyne incognita was 
achieved using 1000 ppm concentration of Ganoderma 
lucidum bio-active molecules after 72 hours of incubation 
[58-60]. Nematophagous activities of five mushrooms were 
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evaluated by Ishizaki, et al. [61], and resulted that five 
species of saprophytic mushroom including Cyptotrama 
asprata, Panellus stipticus, Hohenbuehelia reniformes, 
Resupinatus applicatus, and Pleurotus salmoneostramineus 
can successfully immobilize and consume the pinewood 
nematode, Bursaphelenchus xylophilus. 
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