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Abstract

Accidents in process industries include fires, explosions, or toxic releases depending on the spilled material properties and 
ignition sources. One of the worst phenomena that may occur is the called domino effect. This triggers serious consequences 
on the people, the environment, and the economy. That is why the European Commission defined the domino effect prediction 
as a mandatory challenge for the years ahead. The quantification of the domino effect probability is a complex task due to the 
multiple and synergic effects among all accidents that should be included in the analysis. However, these techniques could be 
integrated with others in order to represent the domino effect occurrence reliably. In this matter, artificial intelligence plays 
a vital role. Bayesian networks, as one of the artificial intelligence nets, have been widely applied for domino effect likelihood 
determination. This research aims to provide a guide for quantifying domino effect probability using Bayesian networks 
in a hydrocarbon processing area. For this purpose, a four-step model is proposed integrating some classical risk analysis 
techniques with Bayesian networks. Moreover, this methodology is applied to an actual hydrocarbon storage and processing 
facility. After that, the joint probability can reach 9.37% for the process unit tank 703 which storages naphtha. Hence, safety 
management plans must be improved in this area for reducing this actual risk level. Finally, this research demonstrates how 
Artificial intelligence techniques should be integrated with classical ones in order to get more reliable results.  
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Introduction

Accidents in process industries include fires, explosions 
or toxic releases depending on the spilled material properties 
and ignition sources. One of the worst phenomena that may 
occur is the called domino effect [1,2]. Cascading effects of 

accidents have been widely studied in specialized literature. 
Authors coincide in the concept of the domino effect as a 
sequence of accidents where the primary scenario leads to 
new scenarios and the consequences of the whole chain of 
events is higher than the single primary event [3,4-7]. That 
is why European Commission established the domino effect 

https://medwinpublishers.com/PPEJ/
https://portal.issn.org/resource/ISSN/2578-4846#
https://medwinpublishers.com/
https://doi.org/10.23880/ppej-16000274


Petroleum & Petrochemical Engineering Journal 
2

Duenas Santana JA, et al.  Using Bayesian Networks for Quantifying Domino Effect Probability in 
a Hydrocarbon Processing Area. Pet Petro Chem Eng J 2021, 5(3): 000274.

Copyright© Duenas Santana JA, et al.

prediction as a mandatory challenge for the years ahead [8].

The quantification of the domino effect probability is a 
complex task due to the multiple and synergic effects among 
all accidents that should be included in the analysis. Then, 
classical risk analysis techniques do not provide the most 
credible or reliable results regarding domino effect likelihood, 
such as Past Event Analysis, Event Tree or Fault Tree [5,9]. 
However, these techniques could be integrated with others in 
order to represent the domino effect occurrence reliably. In 
this matter, artificial intelligence plays a vital role. Bayesian 
networks, as one of the artificial intelligence nets, have been 
widely applied for domino effect likelihood determination. 
Dueñas Santana, et al. [5] studied a new integrated Bayesian-
Petri approach for quantifying individual impact due to fire 
and explosion accidents. Moreover, Dueñas Santana, et al. [6] 

proposed a new Fuzzy-Bayesian approach for determining 
failure probability due to pool fire. Additionally, Bayesian 
networks have been declared in other researches as the 
most suitable tools for domino effect representation [10-15]. 
Hence, this research aims to provide a guide for quantifying 
domino effect probability using Bayesian networks in a 
hydrocarbon processing area. 

Methodology

This section focuses on explaining the developed 
methodology (Figure 1) for the present research. This is a 
four-step model which integrates the Scenario Simulation 
using the ALOHA software, the Probit Equations and the 
development of Bayesian Networks. 

Figure 1: Proposed methodology in the framework of this research.

The first step aims to select the process units according 
to its potential for detonating fire and explosion accidents [7]. 
Next, the second stage is related to the scenario simulation 
using the ALOHA software, for determining the escalation 
vectors (thermal radiation and overpressure), which leads to 
the definition of credible domino sequences comparing these 
values to threshold ones. Subsequently, step 3 is related to 
the determination of escalation probability using the Probit 
Equations proposed by Reniers and Cozzani [16]. Finally, 
step 4 focuses on the development of the Bayesian networks 
for the domino effect likelihood quantification. 

Step 1: Selection of the Process Unit

This step consists of the division of the study area into 
process units, based on their potential of generating damages 
themselves. In other words, each process unit must contain 
a hazardous material that may be involved in the case of 
an accident. Furthermore, a technological criterion may be 
considered to give priority to parts of the process which have 
been involved in previous incidents or have a higher risk of 
producing fire or explosions [5,17]. 
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Step 2: Simulation of the Scenarios and 
Determination of the Escalation Vectors

Fire and explosion accidents would depend on the 
chemical and physical properties of the storage material in 
every process unit [18,19]. ALOHA© software is a prestigious 
tool that determines the scope of thermal radiation (due 
to fires) and overpressure (due to explosions). ALOHA© 
was developed jointly by two international companies: The 
National Oceanic and Atmospheric Administration (NOAA) 
and the Environmental Protection Agency (EPA). In addition 
to this, ALOHA© has been recognized by the Ministry of 
Science, Technology and Environment in Cuba (CITMA) as 
the recommended software for this kind of study [4,20]. More 
information about the described software can be found in 
the ALOHA© User´s Handbook (2016). Additionally, ALOHA 
established the following Levels of Concern (LOC):
For thermal radiation, three LOC values are established:
 Red Threat Zone: 10 kW/m2: potentially lethal within 60 
seconds. 
 Orange Threat Zone: 5 kW/m2: second degree burns 
within 60 seconds 
 Yellow Threat Zone: 2 kW/m2: pain within 60 seconds. 

In the case of overpressure due to the explosion of a vapor 
cloud:
Red Threat Zone: 8.0 psi: destruction of buildings. 
Orange Threat Zone: 3.5 psi: serious injury likely. 
Yellow Threat Zone: 1.0 psi: shatters glass. 

Step 3: Quantification of the Escalation 
Probability

The quantification of the escalation probability for fire 
and explosion accidents is key in domino effect analysis. Thus, 
probit Equations which calculate necessary parameters are 
described in the literature [16]. The escalation probability 
represents the potential of a first leading accident (primary 
accident) that results in a chain of events [5]. The Probit 
Equations for determining the escalation probability for 
atmospheric storage vessels are shown in Table 1. When the 
probit value is obtained, it is transformed into a probability 
value according to Equation 1.
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Table 1: Vulnerability models for atmospheric storage tanks.
Y: probit value for escalation given the primary scenario; ttf: time to failure, seconds; I: radiation intensity on the target equipment 
kW/m2; V: equipment volume m3; Ps: peak static overpressure on the target equipment Pa.

In the manner described, the proposed methodology 
determines the probability of escalation for further use.

Step 4: Development of Bayesian Network for 
Domino Effect Representation

A Bayesian Network is an acyclic graphic used for 
reasoning under uncertainty, in which nodes represent 
variables and are connected by addressing arcs [12,21-23]. 
The development of a Bayesian Network has a main aim: the 
quantification of domino effect probabilities corresponding 
to each escalation level. This is possible due to the inclusion 
of specific nodes proposed by Khakzad, et al. [10].
 

Arcs denote dependencies of causal relations between 
nodes, while conditional probability tables determine the 

type and force of every dependency [22,23]. One of the main 
advantages of Bayesian networks is their mathematical base 
in Bayes’ rule according to Equation 5.

( ) ( ) ( )
( )BP

ABPAPBAP ⋅=  (5)

This means that the conditional probability of A given 
B, ( )BAP , also named posterior probability due to its 
derivation from the specified value of B probability; is 
equivalent to the product of the probability of A, ( )AP , with 
the Bayes’ factor or probabilities relation, which is defined as 
the probability of B given the event A, ( )ABP  , divided by 
the probability of B, ( )BP .
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Results and Discussion

In this section the application of the proposed 
methodology is applied in a hydrocarbon storage area of 
Matanzas, Cuba. Moreover, the results will be thoroughly 
explained and compared with existing literature.

Results of the Selection of Process Units (Step 1)

The first step aims to the selection of the appropriate 
process units. Table 2 shows the technological characteristics 
of the studied tanks, where all the process units are 
atmospheric vessels.

Process Unit Storage 
material

Nominal volume 
(m3) Diameter (m) Operational height 

(m)
Shape thickness 

(mm)
TK 101 Crude oil 5000 22.81 10.31 6
TK 102 Crude oil 5000 22.85 10.29 6
TK 103 Crude oil 5000 20.92 12.28 6
TK 104 Crude oil 5000 20.89 12.28 6
TK 701 Naphtha 200 6.62 5.6 6
TK 702 Naphtha 200 6.62 5.58 6
TK 703 Naphtha 200 6.95 5 6
TK 704 Naphtha 200 6.97 5 6

Table 2: Technological characteristics of process units.

Every process unit has itself the capability of generating 
fire and explosion accidents, so, the next step is related to the 
identification of possible scenarios and simulation of these 
for quantifying escalation vectors.

Results of the Simulation of the Scenarios and 
Determination of the Escalation Vectors (Step 2)

This step is related to the simulation of fire and explosion 
scenarios to quantify the escalation vectors: thermal radiation 
and overpressure. These results are shown in Tables 3 & 4.

Process Units
Thermal Radiation (kW/m²)

101 102 103 104 701 702 703 704
101 34 35 21 41 32 25 18
102 35 25 38 13 12 11 9
103 34 25 37 30 39 41 41
104 21 38 37 12 13 13 13
701 8 2 5.2 1.7 38 14 7
702 7 2 8 2 43 40 17
703 4.8 1.7 9 2.2 16 40 45
704 3 1.45 8.2 2 7.5 15 41

Table 3: Thermal radiation among process units.

Process Units
Overpressure (psi)

101 102 103 104 701 702 703 704
701 6.36 6.36 6.36 6.36 6.36 6.36 6.36
702 6.36 6.36 6.36 6.36 6.36 6.36 6.36
703 6.36 6.36 6.36 6.36 6.36 6.36 6.36
704 6.36 6.36 6.36 6.36 6.36 6.36 6.36

Table 4: Overpressure among process units.

https://medwinpublishers.com/PPEJ/


Petroleum & Petrochemical Engineering Journal 
5

Duenas Santana JA, et al.  Using Bayesian Networks for Quantifying Domino Effect Probability in 
a Hydrocarbon Processing Area. Pet Petro Chem Eng J 2021, 5(3): 000274.

Copyright© Duenas Santana JA, et al.

In subarea 1 (containing the crude oil tanks), the highest 
values of thermal radiation are emitted from tank 101 
regarding tanks 103 and 701 with 35 kW/m2, 41 kW/m2 
respectively. Next, tank 103 generates thermal radiation of 
41 kW/m2 with respect to tanks 703 and 704. In subarea 2 
(containing the naphtha tanks), the highest value of thermal 
radiation is 45 kW/m2 and it is generated from tank 703 to 
tank 704; after that, the value of 43 kW/m2 from tank 702 
with respect to tank 701. Similar values were obtained by 
Dueñas Santana et al., (2021b). These values are enough for 
triggering the escalation in this area (three times higher than 
the threshold values) and this is due to the high flammability 
and volatility of these substances. 

In the case of a Vapor Cloud Explosion (VCE) occurs, the 
overpressure generated is around 6.36 psi (43.85 kPa) which 
means a very high possibility of escalation. These results are 
similar for those obtained for Dueñas Santana et al. [6]. 

Results of the Quantification of the Escalation 
Probability (Step 3)

Escalation probability gives a criterion needed for 
linking the nodes into the Bayesian networks. That is why 
the determination of these values is key in the framework of 
this research. These values are shown in Tables 5 & 6.

Process Units
Escalation Probability due to Thermal Radiation

101 102 103 104 701 702 703 704
101 0.88 0.89 0.56 0.9 0.79 0.61 0.34

102 0.89 0.7 0.92 0.14 0.1 0.07 0.03

103 0.88 0.7 0.91 0.75 0.88 0.9 0.9

104 0.56 0.92 0.91 0.1 0.14 0.14 0.14

701 0.03 1.08E-06 0.003 0 0.87 0.18 0.01

702 0.01 1.08E-06 0.03 1.08E-06 0.92 0.89 0.3

703 0.001 0 0.05 2.83E-06 0.26 0.89 0.93

704 4.98E-01 0 0.03 1.08E-02 0.01 0.22 0.9

Table 5: Escalation probability due to thermal radiation among process units.

Process Units
Escalation Probability Due To Overpressure

101 102 103 104 701 702 703 704
701 0.98 0.98 0.98 0.98 0.98 0.98 0.98

702 0.98 0.98 0.98 0.98 0.98 0.98 0.98

703 0.98 0.98 0.98 0.98 0.98 0.98 0.98

704 0.98 0.98 0.98 0.98 0.98 0.98 0.98

Table 6: Escalation probability due to overpressure among process units.

The highest values of escalation probability correspond 
to the highest values of escalation vectors: thermal radiation 
and overpressure. The VCE occurrence leads to a more 
likely escalation due to the consistent high value of 0.98 for 
escalation probability in this case, respect to all process units. 
Similar values were obtained for Dueñas Santana et al. [5,6].

Results of the Development of Bayesian 
Networks For Domino Effect Representation 
(Step 4)

Bayesian networks (BN) aim to quantify the domino 
effect probability. For determining the most reliable net 

architecture based on the results of previous steps, five 
Bayesian networks are developed:
1. BN #1: This BN is developed considering a pool fire as 

the primary event in the tank 703 (naphtha storage) and 
secondary or tertiary process unit escalation pattern 
through thermal radiation vector triggering to several 
pool fires.

2. BN #2: This BN is developed considering a VCE as a 
primary event in tank 703 (naphtha storage) and the 
escalation pattern depending on the overpressure vector 
triggering to several VCEs. 

3. BN #3: This BN is developed considering a VCE as a 
primary event in tank 703 (naphtha storage) and the 

https://medwinpublishers.com/PPEJ/
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escalation pattern depending on the overpressure 
vector for naphtha-storage tanks and thermal radiation 
for crude-storage tanks triggering several pool fires and 
VCEs.

4. BN #4: This BN is developed considering a pool fire as 
a primary event in tank 103 (crude oil storage) and the 
escalation pattern depending on the thermal radiation 
vector triggering several pool fires.

5. BN #5: This BN is developed considering a pool fire 
as a primary event in tank 103 (crude oil storage) and 
the escalation pattern depending on the overpressure 
vector for naphtha-storage tanks and thermal radiation 

for crude-storage tanks triggering several pool fires and 
VCEs.

Figure 2 shows the developed BN #1. In this BN, tank 
703 is the primary process unit; tanks 103, 702 and 704 
are the secondary units; tanks 102, 104, and 701 are the 
tertiary units; and finally, the tank 101 and heat exchangers 
in the area are considered quaternary units. The possible 
secondary units due to thermal radiation escalation from 
tank 703 are just three because of the position of this vessel 
with respect to the others.

Figure 2: BN #1 developed from a starting pool fire in tank 703.

Figures 3 & 4 show the results related to the probability 
of accident in each process unit corresponding to BN #1. 

Figure 3: Prior accident probabilities for the BN #1.

https://medwinpublishers.com/PPEJ/
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Figure 4: Accident probabilities for the BN #1 if an accident occurs in a process unit. 

For the developed BN #1, the accident probabilities are 
around 5%, these values are high according to specialized 
literature [5,6,13,24,25]. Though tank 703 has low capacity, 
the storage material is naphtha which is a highly flammable 
and volatile substance. Thus, there is a high probability of 
developing this domino effect pattern in the area. The domino 
effect first level probability (DL1) is 5%, for a second level 
(DL2), 4.15% and for the third level (DL3), 0.27%. In the case 
of an accident occur in any of the process units, the BN allows 
updating the probabilities knowing this new event. Then, the 
domino effect first level likelihood is 100% which means 

that the possibility of occurrence of this phenomenon is the 
highest possible. Thus, this domino effect sequence is very 
likely. For BN #2 and BN #3, similar results were obtained. 
However, the sequence represented in the BN#1 is the most 
probable in the domino effect occurrence. 

Figure 5 shows the developed BN #4. In this BN, tank 
103 is the primary process unit; tanks 101, 104, 703 and 
704 are the secondary units; tanks 102, 702, 701 and heat 
exchangers are the tertiary units. 

Figure 5: BN #4 developed from a starting pool fire in tank 103.

Figures 6 & 7 show the results related to the probability 
of an accident in each process unit corresponding to BN #4

https://medwinpublishers.com/PPEJ/
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Figure 6: Prior accident probabilities for the BN #4.

Figure 7: Accident probabilities for the BN #4 if an accident occurs in a process unit.

The accident probability for the secondary process units 
is less than 2.5% but is still high according to specialized 
literature. The development of this specific sequence is 
less probable than that in the naphtha-storage tanks due 
to the naphtha can lead also to VCEs, not just pool fires 
(higher flammability and volatility). For all cases is almost 
completely likely that another accident can occur if a previous 

one happened in tank 103. The domino effect probability 
is higher than 99% for all escalation levels. For the BN #5, 
similar results were obtained.

Figure 8 shows a comparison among all domino effect 
level probabilities considering a starting event in tank 703 
and in tank 103 respectively for all developed BNs. 

https://medwinpublishers.com/PPEJ/


Petroleum & Petrochemical Engineering Journal 
9

Duenas Santana JA, et al.  Using Bayesian Networks for Quantifying Domino Effect Probability in 
a Hydrocarbon Processing Area. Pet Petro Chem Eng J 2021, 5(3): 000274.

Copyright© Duenas Santana JA, et al.

Figure 8: Comparison among all domino effect level probabilities considering a starting event in tank 103 and in tank 703 

Moreover, the joint probability is 9.37% for tank 703 and 
5.00% for tank 103. Thus, tank 703 is more dangerous than 
tank 103 considering domino effect propagation because has 
more probabilities for the occurrence of this phenomenon. 
This is due to the high flammability and volatility of the 
naphtha regarding to crude oil. These results are similar to 
those obtained for Dueñas Santana, et al. [5]. 

Conclusions

Bayesian networks are a vital tool for quantifying 
domino effect probability in a hydrocarbon storage area. 
BNs allow to consider the possible interactions among all 
credible accidents and to determine the most likely domino 
sequence in an area. In the analyzed case study, the most 
dangerous process unit for domino effect detonation is tank 
703 which storages naphtha. The joint probability can reach 
9.37% for this process unit. BNs predict the domino effect 
level probabilities if an accident occurs in any process units, 
these values are considered the highest possible, because 
they can reach 100% in some cases, and in others higher 
than 99%. Thus, safety management plans must be improved 
in this area for reducing this actual risk level. This research 
demonstrates how Artificial intelligence techniques should 
be integrated with classical ones in order to get more reliable 
results. 
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