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Abstract

The desired technology for manufacturing light-weight components from metal alloys mostly aluminum and magnesium alloy 
is Die casting. High pressure die casting requires the liquid metal to be forced at high speed and pressure through a metal pipe. 
In our study, we seek to study Aluminum filling under high pressure in two different pipes, cylindrical and conical pipes. Two 
cases are considered for the cylindrical pipe, when the pipe vertical and when the pipe in inclined at an angle of 450 with the 
horizontal. The governing equations are obtained and the results are compared. The governing equations are obtained and 
modeling is done using ANSYS FLUENT.
The results show that inclining the cylindrical pipe causes a shift in the oscillations and the inclined pipe has slightly lower 
amplitude of oscillation implying a greater loss of energy due to the inclination. The inclined cylindrical pipe has higher 
damping compared to the vertical cylindrical pipe. It is also evident that the conical pipe has higher oscillations than the 
cylindrical pipe implying a greater loss of energy for the conical cylindrical.
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Introduction

Die casting is the process of forcing molten metal 
under high pressure in metal casting. It is one of the oldest 
manufacturing process and widely used [1]. The material to 
be used in the manufacturing is first liquidized by properly 
heating it in a suitable furnace. The most common molten 
metal used is aluminum. It then is forced into the cavity of a 
reusable steel mold (the die) under high pressure [2]. There is 
an increasing demand for Aluminium die casting worldwide. 
It is therefore important for the process to be understood in 
order to make sensible manufacturing choices for the future 
and thus, there has been a lot of research done on modeling 
of die casting process to study how different factors affect 
the process.

Davey and Hindua using a steady state approximation to 
model the pressure die casting process with the boundary 
element method [3]. Due to the importance of the temperature 
on the cavity surfaces on the quality of the component, they 
were able to use the boundary element method to predict the 
temperature on the surface. Comparison of the temperatures 
with other methods yielded good agreement.

Ozlem, et al. [1] performed a computer simulation using 
commercially available software of a high-pressure die 
casting of aluminum alloy. The commercial aluminum alloy 
was Etial 150 (AlSi12Cu) that is used for flange which is a 
washing machine part. They investigated the mold filling, 
solidification, temperature distribution, porosity, and 
velocity of the liquid metal during high-pressure die casting. 
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The results showed that the model values used in simulations 
were accurate and were applied in the experimental casting.

Paul, et al. [4] did a computational modelling of thin 
walled high pressure die casting using Lagrangian method 
that uses an interpolation kernel of compact support known 
as smooth particle Hydrodynamics (SPH). The validation of 
the numerical modelling was done using the water analogue 
experiment and there was good agreement between the 
simulated results and the experimental results. In Fu J, Wang 
K [5], the process of die filling of semi-solid state alloy A356 
is simulated. Two non-Newtonian constitutive equations 
are modeled using the CFD software PROCAST. The results 
showed that the material the semi-solid metal alloy has a 
special die filling behavior compared with liquid filling.

In recent years, the advent of mesh free methods has led 
to the opening of new avenues in numerical computational 
techniques to follow the physical behaviour of fluid flow. In 
this paper, we seek to study Aluminium filling in cylindrical 
and conical pipes.

Methodology

We start by considering a vertical cylindrical pipe made 
of aluminum titanate immersed in molten aluminum (alloy 
226) as shown in Figure 1. The pipe is immersed to a depth 
of 50mm. The total length of the pipe is 570mm and positive 
pressure relative to the air on the surface is applied which 
causes the melt in the pipe to rise to some height h.

 

Figure 1: Die filling diagram vertical cylindrical pipe 
immersed in molten aluminum.

We first start by considering the case without 
dissipation. The total force acting on the liquid column, the 
kinetic energy and potential energy is calculated. Energy loss 
due to dissipation is then included by analyzing the causes 
of dissipation in the system and then incorporating in the 
energy equation.

The same procedure as in the case of vertical cylindrical 
pipe is used to study the damped oscillations in an inclined 
cylindrical pipe. The pipe is immersed at a depth of 50 mm 
and inclined at an angle of . Positive pressure relative to the 
air is applied to the liquid surface causing the melt in the 
pipe to rise to some height h.

Lastly, we consider a vertical conical pipe. It is immersed 
to the same depth as the cylindrical vertical pipe, i.e to a 
depth of 50mm and the same methodology will be followed 
as that of the vertical cylindrical pipe.

Governing Equations

Case I: Vertical Cylindrical Pipe

We first consider a case without dissipation. The total 
force acting on the liquid column, the kinetic energy and 
potential energy is calculated. The next step is then to analyze 
the causes of dissipation in the system and then incorporate 
them in the energy equation.

Total Energy: The potential energy is obtained by considering 
the force acting in the liquid column and integrating it by 
taking the potential force 0pE =  for h = 0 to get the potential 
energy as:

21
2pE gAhρ=                                        (1)

The kinetic energy is given as:

( )2 21 1
2 2kE mv A h H hρ= = +                           (2)

The total sum of energy in the column is obtained by 
summing up equations 1 and 2. The differentiated energy 
together with the 1st principle of thermodynamics gives the 
balance of energy equation. This gives the energy without 
dissipation as:

( ) 21 2( 2 )
2

A h H hh hh ghh pAhρ + + + =    

                
(3)

To get the total energy equation, energy lost due to 
dissipation is analyzed and incorporated into equation 3. 
The losses in the pipe are due to friction on account of the 
roughness of the wall and also due the singular pressure loss 
at the entrance or exit of the pipe if liquid rises or if liquid 
goes down respectively.

The energy loss due to friction can be written as:

w WdE p V= ∆                                           (4)

https://medwinpublishers.com/PSBJ


Physical Science & Biophysics Journal3

Abuga JG. Mathematical Modelling and Simulation of Aluminium Filling in Conical Pipe and 
Cylindrical Pipe under High Pressure. Phys Sci & Biophys J 2022, 6(2): 000215.

Copyright©  Abuga JG.

The pressure loss due to friction as given by Darcy 
formula is given as 2

2w
h

flvp
D

ρ
∆ =

, which can be written as:

( ) 2 2 211 1
2 2 2w w

h h

f fH h hp h H h h k h
D D H H
ρ ρ ρ   ∆ = + = + = +   

   
  

               

(5)
where w

fhk
D

=  Thus,

21 1
2w w

hdE k A h h
H

ρ  = + 
 

                                 (6)

The singular pressure loss is given as

21
2w wdE k h hρ=  

                                  
 (7)

				  
Equations 5 and 6 are included in Equation 3 to obtain 

the final equation:

( ) ( )2 1 1
2 2 E W

p th hh H h gh k k h h
H ρ

    + + + + + + =    
   



     (8)

Case II: Inclined Cylindrical Pipe at an Angle

Just as is the case with the vertical pipe, the total force 
acting on the liquid column, the kinetic energy and potential 
energy is calculated and then the causes of dissipation in 
the system are analyzed and incorporated in the energy 
equation.
Total Energy: The total energy is obtained, like in the previous 
case, by adding the kinetic and potential energy. We also 
analyze the energy losses due to dissipation and included it 
to get the governing energy equation. Using the potential 
energy formula ' g

pdE m dZ=  and considering that 
( )sin

h Hl
θ

+
=

and
( )

'
'

'sin
hl
θ

= , the potential energy in the tube will be given 

by:
2

' '

0

1
sin 2 sin

h

p
gA hE m gdZ gAl dZ z dZ gAρρ ρ
θ θ

= = = =∫ ∫ ∫

By using the kinetic energy formula and length 
( )sin

h Hl
θ

+
=  

and
( )

'
'

'sin
hl
θ

= , for the inclined vertical pipe, the kinetic 

energy formula is given by:
2'1

2 sin sink
h H hE Aρ

θ θ
 +

=  
 

                             (9)

Summing up the potential and kinetic energy, the total 
sum of energy is given by:

( ) '22

3

1
2 sin sin

h H hhE A gρ
θ θ

 +
= +  

 
                     (10)

Differentiating the energy equation, we obtain

( )2

2 3

21 2
2 2sin sin sin

h H hhA hhE ghhρ
θ θ θ
 +

= + +  
 



 




            
(11)

To get the governing energy equation, we need to 
analyze and incorporate energy losses due to dissipation into 
equation 11. To obtain the loss due to friction, V  is replaced 
with l  into equation 5 and use Darcy’s formula.

Thus the energy loss due to friction is given as:

( )
2 2

2 2

4 4 4

1
1

2 sin 4 sin 2sinw w
h

hr H h hA h H h h h hhHE Ak
HD r

ρλπρλ
ρ

θ θ θ

 + +   = = = + 
 

 

   

 

(12)
With 

2w
Hk
r

λ
=

Similarly, the singular pressure loss at the entrance of 
the pipe is obtained by replacing V  with l  in equation 7 
to obtain:

2
2 2

2

1 1 1
2 2 2 sinE E E E

hp k v k l kρ ρ
θ

∆ = = =


              (13)

The final equation energy equation with dissipation is 
obtained by incorporation equations 12 and 13 into equation 
11 and simplifying to get:

( ) ( )
¨

2

2 2 3 21
2sin sin 2sin 2sinw E

h h h hh H h p th hgh k k
H ρθ θ θ θ

   +     + + + + + =         

   



 

(14)
Case III: Vertical Conical Pipe

The same procedure is done for the vertical conical pipe 
as was in the previous cases. To get the potential energy, we 
use the potential energy formula and the radius, 

0 tan
zr R
α

= +

https://medwinpublishers.com/PSBJ
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to obtain:

2 2 3 4

2

2
2 3tan 4tan

o o
p

R h R h hE gρ π
α α

 
= + + 

 
                  (15)

The Kinetic energy is obtained by getting the kinetic of a 
small region z, then integrating over the whole region from 
-H to h. We get a function for the velocity of the small region 
v(z) using the flow rate Q equation dvQ

dt
=

.

The volume is given as:

( )
( )2 22 3 3

2
0tan tan 3tan

h o
oH

R h Hz h HV R dz R h Hπ π
α α α−

 − +   = + = + + + 
    

∫ 	

(16)

To obtain the velocity equation, equation 14 is first 
differentiated to get the flow rate Q and the result divided by 
the cross-sectional area and then 

( )
2

tano
zdV A z dz R dzπ
α

 = = + 
 

is replaced into the result, 

integrated and simplified to obtain the kinetic energy in the 
whole pipe as:

3
2

0
1
2 tan

tan

K

o

h h HE R h
hR

ρπ
α

α

 
 + = +   

   + 
 

             (17)

The total energy is obtained by summing Equations 14 
and 16 and differentiating the result to obtain and using the 
1st principle of thermodynamics dE pdv= . The total energy 
equation is thus given as:

( )
¨

22

0

0

23 1
2 tan 2 tan

tan tano

h h H hh H h h pgh R
H HR Rα α ρ
α α

   
   + + +  + + + =      

     − −   
   





	

(18)
The possible energy losses due to dissipation are 

analyzed and incorporated into Equation 17.

The energy loss due to friction is obtained, 
2

3 2
0 2

21 1
2 tan tan

o
w w

R hh hdE k h R
H

ρ π
α α

  = + + +  
   



and the 

singular pressure loss, 2 21 ( )
2 tanE E o

hdE k R h hρπ
α

= +   is 

incorporated into equation 17 and simplified to get the final 
energy equation: 

( )
¨

22

0

0

23 1
2 tan 2 tan

tan tan
1 11
2 2

o

w E

h h H hh H h hgh R
H HR R

h pk h h k h h
H

α α
α α

ρ

   
   + + +  + + +      

     − −   
   

 + + + = 
 





   

 

(19)

Validation

To validate if the equations are correct, we consider 
equations the total energy equations, equations 8, 14 and 19. 
For equation 8, we consider a steady state case, thus 

¨
0h h= =  

and considering no loss due to dissipation, we obtain from 
equation 8: ( ) ( )

0

p t p t
gh h

A gρ
= ⇒ = To check for the inclined 

pipe, for it to be considered vertical, sin θ must be equated to 
900. The length l h H= + and equation 14 thus reduces to 
equation 8. To check the total energy equation for the conical 
pipe, we consider the case of cylindrical pipe in which case 

90α =  and the radius will be constant throughout the pipe. 
Thus, Equation 19 will reduce to that of a cylindrical pipe 
when 90α =  since any term consisting of tan α  in the 
denominator will tend to zero. Equations 8, 14 and 19vwere 
plotted for values of sin( ) 90θ =  and tan ( ) 90α =  . From 
Figure 2, it is apparent that the two equations 14 and 19 both 
reduce to equation 8.

Figure 2: Graph of h[t] for the vertical cylindrical, inclined 
cylindrical and conical pipe as a function of time for kw = 
0.09375, kE = 0.9054, H = 50mm, ρ = 2460kg/m3, 0tan 90á =
, 0sin  90è =  with a pressure jump.
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Numerical Modelling

Case of Cylindrical Pipe

We begin the discussion of the numerical results for the 
conical pipe inclined at an angle. The modeling was done 
in Ansys Fluent in which case we used a pressure-based, 
steady solver. The model used was k-epsilon, standard and 
enhanced wall treatment. Using Bernoulli’s equation, the 
kinetic energy was calculated using computed pressure and 
velocity values from Ansys Fluent.
The Bernoulli equation gives

2 2
1 1 2 2

1 1
2 2

p v p vρ ρ+ = +

and since 2 2
1 2v v<  it implies that 2

1v  can be neglected. This 
leads to

( )1 22
2

2 P P
v

ρ
−

= +

For a real fluid, we have

2 2 2
1 1 2 2 2

1 1 1
2 2 2 Ep v p u k vρ ρ ρ+ = + +                    (20)

Neglecting 2
1v  in Eqn 20, calculating KE, we obtain

2
1 2 2

2
2

1
2

E

p P u
k

v

ρ

ρ

− −
=

From the simulation in Fluent, for the cylindrical pipe

2
2

2(7377.243 815.6413) 5.3328
2460

v −
=+ =

20.70932921
5.33283Ek = −

The contours of the total pressure and the Y-velocity are 
plotted (Figure 3 & 4).

Figure 3: Contour of Total pressure in Pascal for the 
cylindrical pipe.

Figure 4: Contour Y velocity in m/s for the cylindrical pipe.

Case of Conical Pipe

The same procedure was done for the case of the conical, 
the  was calculated.

For the simulation in Fluent, for the conical pipe

2
2

2(7252.4108 2190.4495) 4.1154
2460

v −
= =

21.33981 0.3
4.1154Ek = − =

The contours of total pressure and Y-velocity for the 
conical pipe were plotted (Figures 5 & 6).

Figure 5: Contour of Total pressure in Pascal for the 
conical pipe.
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Figure 6: Contour Y velocity in m/s for the conical pipe.

Piecewise Function

A piecewise function was used to define the pressure. 
The pressure was given as a linear function as

0, 1
( ) 817.77 817.77, 1 10

7360, 10

t
p t t t

t

<
= − < <
 >

Initially we had used a jump in pressure given as
0, 1

( )
7360 1

t
p t

t
<

= <
To compare the effects of the different pressure function 

on the height function equation, the graph was plotted 
(Figure 7).

Figure 7: Graph of h[t] as a function of time for kw = 
0.09375, kE = 0.9054, H = 50mm, 32460 /kg mρ = for 
different pressure functions.

Results and Conclusion

To compare vertical cylindrical pipe and conical pipe, 
we use the ek  obtained from the numerical modeling and 
the linear pressure function and plot the graph of height 
h(t) as a function of time t. Figure 8 was plotted for the 
different values of Ek  ( 0.9895Ek = for cylindrical pipe and 

0.1060Ek =  for conical pipe).

Figure 8: Graph of h[t] as a function of time for 0.09375wk =  
and  (cylindrical pipe) and 0.1060Ek =  (Conical pipe) with 

3

246050 , 0.0108 , kgH mm R m p
m

= = =
, and at t = 0, p = 0, at t 

= 10, p = 7360Pa

It is clear that, the conical pipe has greater oscillations 
than the cylindrical pipe.

To compare the vertical cylindrical and inclined pipe, 
Figure 9 was plotted for the same Ek  and wk  values. It is 
clear that the inclined pipe has higher oscillations than the 
vertical cylindrical pipe.

Figure 9: Graph of h[t] as a function of time plotted for the 
vertical and inclined cylindrical pipe with 

3

24600.09375, 1, 50 ,w E
kgk k H mm p

m
= = = =  and at 

0, 0, 10, 7360t p at t p pa= = = = .
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For the case where there is no dissipation ( 0)E wk k= =  
for the vertical and inclined cylindrical pipe, the fluid will 
oscillate in the pipe indefinitely since there is no energy 
lost either through friction or at the entry. For the case of 
dissipation, the higher the energy lost, the higher the amount 
of damping of the oscillation. It is evident from Figure 9 that 
inclining the cylindrical pipe causes a shift in the oscillations 
and the inclined pipe has slightly lower amplitude of 
oscillation implying a greater loss of energy due to the 
inclination. It is evident from the graph that the conical pipe 
has higher oscillations than the cylindrical pipe implying a 
greater loss of energy for the conical cylindrical.
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