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Abstract

The study presents solutions of Dirac equation with the Molecular Hua potential energy model using the Formula method. In
the non-relativistic limit, the relativistic energy equation becomes the non-relativistic rotation-vibrational energy expression.
Numerical results for some molecules are also presented. Interestingly, our results agree with those in literature.

Keywords: Dirac Equation; Molecular Hua Potential; Bound States; Formula Method; Diatomic Molecule

Introduction

The solutions of wave equations are known to be vital in
quantum mechanics and related areas of physics. The reason
is because the solutions have all the relevant parameters
required to evaluate the associated properties of a physical
system under consideration. Reports on the nonrelativistic
rotational vibrational energies of molecules obtained from
solutions of Schrodinger equation in various potential
models have been presented [1-5]. It has been established
that relativistic interactions are essential for an accurate
determination of the rotation-vibration energy spectra of
molecules by using quantum mechanical techniques [6].
Recently, by solving Dirac equation with General molecular
potential, Improved Tietz potential and Improved Rosen-
Morse potential, some authors investigated the relativistic
rotation-vibrational energies for 5 'A, state of Na, molecule,

the X2z * state of the CP molecule and 33Z; state of the
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Cs, molecule, and observed that nonrelativistic energies
decreases as a result of relativistic effects [7-9].

In this paper, we attempt to investigate the solutions
of Dirac equation with the Hua potential energy model. We
also explore the relativistic effects of rotational vibrational
energies for some molecules.

Recently, Hassanabadi H, et al. [10] studied the
Schrodinger equation with Hua potential using the super
symmetry quantum mechanics. Also, a similar form of Hua
potential has been reported by Hua W, et al. [11], to study
the rotation-vibration spectrum of different molecules. The
Hua potential can be used in describing the energy levels of
diatomic molecules, hence motivation for this work. The Hua
potential is expressed as [12,13].

1 _ e—bh (r-r.)

u =V|—— |,
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a, =

where V, r, q and B are respectively the potential depth,
bond length, deformation parameter and Morse constant.
The work is drafted as: The Formula method is presented
in Section 5, Section 6 is a review of Dirac equation under
spin symmetry [14]. The bound state solutions are given in
Section 7. Discussion comes in Section 9. Finally, conclusion
is presented in Section 10.

Formula Method

The Formula method is applied by considering the equation.
dy(s) | 4 -as dy(s)
2 s(l-a,s) ds
5’;2 + §zs(+ L )
—w(s)=0.

s’ (1-a,s)

(2)
The energy and the wave function are derived respectively,
from the equations

2 , | 1-2 1 | 2 ’
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(3)
y(s)=N s (1 - a3s)a52

2_
—a;=0,a, %20

aZ
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where
(1—0{1)+ (1_a1)2_4§3
2
2
a5:l+ﬂ_ &, + [14_&_&] _(%+i+§3j
2 2 2o 2 2 2o a; oy

: (5)

are constants and 2° ! is the Hypergeometric function.

. a, =la,=a,=
A special case where "1 72 374 , we put forward a

simplified energy equation from Equation (3)

q *53 (q+\/q2 74(51 +q§2 +q2§3) +2qn):q2§3 —51 —qzn(n+1)
2

—qn\/qz —4(51 +qéy + 4253) —(Z+;qu —4(4‘1 +g8y + qzég)j

(6)
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Dirac Equation

The Dirac equation with scalar, S(r) and vector potential,
V(r) is given as

]/}D Y(r)=E,¥(r)
IQD =ca.p+ B(uc®+5(r)+V(r)

(7)

where WE

k,E:_jhﬁ are the reduced mass, relativistic

energy, and momentum operator respectively. &, ﬂ are the

4x4 Dirac matrices given by

o = =
o 0) 7 0 =1

O;

Where [ is the 2x2 matrix and is the Pauli matrices given
as

0 1 0 —i 1 0
o, = 1 0 o, =|. O3 =
i 0 0 -1 9)

The spinor, ‘P(I’) can be written as

F,.(r) Y]-lm(a@
‘P(r)=% G (1) Y]-I;n(t9,¢)

(10)
with F, (r)and G, (r) as the upper and lower components

of the Dirac spinors. Y,.,{,(49.¢) is the spherical harmonic of the

spin component and Y/.,{I(H,;é) is the spherical harmonic of
the pseudo spin component. Jand | are the orbital and
pseudo-orbital quantum numbers, while K and m are the
spin-orbit coupling operator and projection on z-axis. If the
spinor in Equation (10) is used, we deduce the following
coupled radial differential equations from the Dirac equation

( ycz —Evic+ Z(r)j

45 G Fa (1)

dr fic
(45 )= G iva(r)jG"'f(”

(11
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If F,,,-(7) is eliminated in favor of G, (1), we derive two

uncoupled differential equations of the form

d*F, (r) K(K+1)
dr®

dA(r)[ ]F o)
dr \dr r) nx

EVKJrZ(r))(/uC +EVK‘ A( ))
nc?

Fope (1) =

Fpye (1)

+ =0,
(.uC +EVK—A(T))
(12)
d’G, 2(r) K(K 1) G (- (uc *EVKJFZ(I‘))(/‘CZ*EVK*A(r))G"K(r)
dr hZCZ
dZ(r)( d _5] ¢ o
dr \dr r) nx -0

(ﬂCZ_EVK+E(r))

(13)
k(k+1)=1(1+1),k(k —1)=1(1 +1),A(r)
where _ 1y (), 5(r) =V (1) + S(r)

Bound State Solutions

dA(r)

In spin symmetry, =0; A(r) = constant. In the non-

relativistic limit, Equation (12) reduces to a Schrodinger
form with 2V(r) in light of the exact symmetry V(r) = S(r).
Adopting a proposal by Alhaidari AD, et al. [15], and setting
S(r)=U, V(r) = C + U,(r), expansion of Equation (12) gives

szm(r){ WZ+EV"_C~‘V&+UH}‘K(K—;DJFM<r>

2
dr n2c? L 2 r
(Elz/](_,uZC'4+C (/UCZ_EVK‘))
s
= . Foe ().
hc
(14)

To solve Equation (14), we adopt an approximation

_bb (r-rp) —2b (r Ip)

D,+D +D.
0" b, (- 2 2
1-ge G -b (r-r)
1-ge % e

(15)
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The approximation is only valid for qebhre >1. We can set

a = bh Vo, X = ! in Equation (14) and expand up to x?

Te

term, we have

D—l1

( (I-9)- (3+q)j
D, =3<1—q)2(<2+q>—3<1—q)j
o (04

p,=1= ‘”( (- q)—(1+q>j
o

(16)
Substituting Equation (15) in Equation (14) and rearranging
gives
2
s,y |1 eibh(rire) .
4172 B (_ ) 4
1-ge h e
ad*Fpye (D) _
dlllg " { —bh(r—re) —th( -r ) Fpe(r)=0,
k(k+1) D +p_E D e
Te —bh(r—re) ? -b (r—r ) 2
1-ge {1—(]6 h e }
(17)
where
(u*+E _~C)
& = VK
1 Hc2
2 2.4 2
i _(EVK uec +55(yc EVKD
2 h2c2

(18)

To solve Equation (17), we use the transformation

_bh (r=7¢) , which gives
s=e

dZF (S) (1-gs) anK(s) Ps2+Qs+R F
a2 s(gs) @ 52(1 gs) T
(19)

where,
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-1 xK(xk+1)D, x(x+1)D. g,C, *x(x +1)D,
P:bi[qzﬁq( 0D, Kk+DD; g’aC, ., ¢’k 4D ]
() e 7. 2 e
oL (qg C. v 26,246, + 2:;;«(;«;1)1)U 7K(K+21)D1)
b, 7, r

— 1D,
R:—l ngg'c‘fglVOfK(Kt) o
b, 2 v
(20)

The constants are calculated from Equation (5) as

oa=La,=a3=q,ay, =V—-R,

1.1 |4 1y L K&+ DD, 2
a5 = 2+2¢1\/b (SIV (g 1) 7’62 +q°,

(21)

Using Egs. (6) and (4), the relativistic energy and
unnormalized eigen function are derived as

E? — Pt ( ct-F j 2 —
( v H Cs|H Vi :(ﬂc +E CS)(Q_'_V +K(K+1)DO
0 1'02 -

hZCz hZ 2 k 2
1[K(K+1)D W, (uc® +E,, -Cs)

(g-1) +%+qn(n+1)
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VR (1-gs)"

Fpe(r)=N,

F1 (—n,n + 2(\/—1? +a5);2\/3+ l,qS)

(23)

N .. L e
"X is a normalization condition.

Non-Relativistic Limit

The non-relativisticlimitis obtained in the exact symmetry
condition (C, = 0) by 9using the mapping
uc* +E, —2uc*E, —uc* - E,_ on Equation (22) to obtain
the non-relativistic rotational-vibrational energy of the
molecular Hua potential for the case of the unaligned spin (
x = J ) in the form

E,=V,+ JU+D)Dh
2u r .
/(/+1)D LA 2 8;4V0 2, YU +1D,
bzh‘{ bzrz zhz(q D+ *‘1"("*1)4{"*5]\/ — 5@+ T
o 2. 8, 4/(/+1)D
2 L0 g_1) L T2
q+ llv+\/l] +bhzhz (-1 + bir
(24)

Equation (24) is the same as Equation (14) in Falaye BJ [13].

Discussions

e e tZ 2
; 1| 4 (uc*+E —cg) / x(x+1)D. In the present work, we have considered CI, (XIZZ’ ), I(
+Hn+z | |[—| V. e ’q—1)2+ 2 +q2
2 2 0 2.2 N rz + I
bb h%c e X(0,) and HF( X Y. ") molecules. The parameters for the
’bhz
4, (uc? B, Cs), 2 k(k+1DD, |, molecules were taken from Pekeris CL [18], Khodja A, et al.
qg+2qn+ p2| 0 22 (g-17+ 2 +q [19] and presented in (Table 1). The relativistic and the non-
h relativistic energy expressions are given in Equations (22) and
(24), respectively (Table 2) contains values of the constants
L ] associated with the Pekeris approximation from Equation
22) (16). (Tables 3-5) show the numerlcal results of the non-
relativistic energies of the Cl, (X'z? o)1 (X(0+)) and HF(
X 3" ) molecules, respectlvely These results appear to agree
with those in literature.
Molecule aq b, (A7) ’r (A) Y (cm™) bu/10%(g)
cl (X12+) 0.012624658 2.200354 1.987 20276.44 2.924
2 g
I (X(O+)) 0.003478812 2.12343 2.666 12547.3 63.4522(amu)
2 g
HF(XIZ+) 0.168490116 1.94207 0.917 49382 0.16

Table 1: Spectroscopic parameters used in this study.

-b, 1,
“Minimum values calculated from g =¢ * ¢

bTaken from Tezcan C, Alhaidari AD, Ikot AN, et al. [14-16].
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Molecule D, D, D,
C2(X'S? ) 0.4726477323 0.5954208116 -0.07378279326
2(X(0:)) 0.5642559227 0.5176197442 -0.08310143541
HF(X'S" ) 0.1746151145 0.5961507758 -0.07755614766

Table 2: Calculated values of the approximation constants.

J Present Okorie US, et al. [16] N J Present Oluwadare 0], et al. [2]
0 -2.489532120 0 -1.547325482 -1.542189775
1 -2.488972028 1 -1.547285176 -1.542169077
2 -2.487851970 -2.548719684 0 2 -1.547204637 -1.542127681
3 -2.486172200 3 -1.547084012 -1.542065587
4 -2.483933104 4 -1.546923521 -1.541982794
0 -2.452017290 0 -1.532622202 -1.515545095
1 -2.451523262 1 -1.532580947 -1.515524411
2 -2.450535582 -2.618990605 1 2 -1.532498497 -1.515483043
3 -2.449055005 3 -1.532374975 -1.515420991
4 -2.447082687 4 -1.532210565 -1.515338255
0 -2.429420043 -2.690130852 0 -1.520551523 -1.489134196
1 -2.428991768 -2.689566057 1 -1.520509328 -1.489113527
2 -2.428135839 2 2 -1.520424988 -1.489072187
3 -2.426853509 3 -1.5201303161 -1.489010177
4 -2.425146688 4 -1.520130316 -1.488927498
0 -2.421580695 -2.762137335 0 -1.511109275 -1.462957037
1 -2.421217671 -2.761572143 1 -1.511066150 -1.462936382
2 -2.420492485 ~2.760441727 3 2 -1.510979937 -1.462895070
3 -2.419406874 3 -1.510850711 -1.462833103
4 ~2.417963488 4 | -1.510678586 -1.462750480
0 -2.428342382 -2.835006978 0 -1.504291302

1 -2.428043924 -2.834441374 1 1504247253

2 -2.427448103 -2.833310161 4 2 1504159181

3 -2.426557126 -2.831613265 3 1504027137

4 -2425374358 4 | -1.503851199

Table 3: Ro-Vibrational energies in eV for Cl, molecule. Table 4: Ro-Vibrational energies for I, molecule
: ) .
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Present

Roy AK, et al. [17]

-5.996097728

-5.8687195228

-5.996097728

-5.8636625262

-5.917092019

-5.8535547327

-5.861617074
-5.818770714
-5.898378354
-5.889684644
-5.878348924
-5.875112697
-5.893229709
-5.950763660
-5.957329774
-5.974864982
-6.011233988
-6.011233988
-6.117534046
-6.135982061
-6.176129874
-6.243814806
-6.346374801
-6.375922588
-6.403980106
-6.462510722
-6.555867128
-6.689554994

Table 5: Ro-Vibrational energies in eV for HF molecule.

WIN|R|O|D[WIN|R|[O|DR|[WIN|R|O(DR|WIN|R|OC(D|W|IN|R|O |~

S

In (Figure 1), we plot the shape of molecular Hua
potential for the selected diatomic molecules. The figure
gives an insight of the characteristics of the the Hua
potential. (Figures 2-7) are various plots showing variation
of rotational-vibrational energy against various parameters
for the diatomic molecules. A monotonic increase in the
energy is seen In (Figure 2) for the molecules as the quantum
number, v, and increases. In (Figure 3) the energy is seen to
increase with rotational quantum number, J. For Cl2 molecule,
the increase is more visible than in I, and HF molecules. The
Cl, atom appears to shift to higher values than the I, and HF
molecules. (Figure 4) indicates a progressive increase in
energy as the deformation parameter, g, and increases. In
(Figure 5), the energy of the diatomic molecules is observed
to increase as the potential depth, V, increases. In (Figure
6), we observe an increase in energy of the Hua potential as
the parameter, b,, increases for the molecules. In (Figure 7),
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the energy of the diatomic molecules first decreases as the
molecular bond length increases between 0 to 0.04 for the
I, and HF molecules; it then maintains a constant value with
increase in the molecular bond length. For the Cl, molecule,
the energy first decreases as the molecular bond length
increases between 0 to 0.14.

Figure 1: Variation of the Molecular Hua potential with
internuclear distance.
o

-

Figure 2: Variation of non-relativistic energy of the
Molecular Hua potential with the vibrational quantum
number for the selected diatomic molecules with J=1.

o

-

Figure 3: Variation of non-relativistic energy of the
Molecular Hua potential with the rotational quantum
number for the selected diatomic molecules with v=1.

o
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Figure 4: Variation of non-relativistic energy of the
Molecular Hua potential with the deformation parameter
for the selected diatomic molecules with J=1 and v=1.

o

Figure 5: Variation of non-relativistic energy of the
Molecular Hua potential with the potential depth for the
selected diatomic molecules with J=1, v=1.

o

J

Figure 6: Variation of non-relativistic energy of the
Molecular Hua potential with bh for the selected diatomic
molecules with J=1, v=1.

~
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Figure 7: Variation of non-relativistic energy of the
Molecular Hua potential with molecular bond length for
the selected diatomic molecules with J=1, v=1.

Conclusion

In this work, we present solutions of Dirac equations
with Hua potential energy model using the Formula
method. Using the spin symmetry and the Pekeris form
of approximation, we evaluated the relativistic rotation-
vibrational energy equation for diatomic molecules under
the Hua potential. In the nonrelativistic limit, the relativistic
energy expression becomes the nonrelativistic rotation-
vibrational energy equation. Numerical results are also
computed for the selected molecules. The results show
considerable agreement with reports in literature. This study
can be applied in molecular physics, spectroscopy and other
fields of science.
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